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ABSTRACT

This document records the results of Phase I of a three-phase product development effort. The purpose of
00 this project is to investigate extensible databases for design applications. These applications have complex

data modeling needs not adequately met by existing database systems. Our goal is to combine the
abstraction and modularity of modem programming languages and the persistent storage management of
databases with the inheritance/refinement mechanism of object-oriented systems to provide an extensible
database product.

The objectives for this first phase are to investigate data modeling and representation requirements for
extensibility. Our primary focus is on programming language access to the extensibility mechanisms of an
object-oriented database. This Phase I project produced a definition of requirements for die product we call
UNIVERS - the UNification of programming language and database technology, with the VERSatility of
object-oriented systems. , Phase [ also establishes a high-level (architectural) design for UNIVERS,
including a description of the programming language/database interface, and an esimate of the feasibility
of Phase II.

The resulting product is an Ada® language interface providing access to Ontologic's existing database
product, Vbase. The OntologicVbase is an object-oriented database development platform targeted at the
needs of the engineering design application builder, -it is-designed to serve as a foundation for MCAD,

- ECAD, and CIM applications. The existing product runs under 4.2 BSD UNIX'** on SUN 3T
s

workstations, and will soon be available on Digital Equipment's VMSM operating system.

Potential UNIVERS applications include Government-sponsored ECAD design applications (for example,
the VHSIC program) and the design needs of major Government contractors (for example, aerospace
firms). We also think that Ada access to Vbase makes an excellent platform for CASE environments,
including a sophisticated APSE for large software system development.
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Michael J. Vilot
Robert M. Strong

Ontologic, Inc.
47 Manning Rd., Billerica MA 01821

1. Introduction
This project is Phase I of a 3-phase Defense Small Business Innovation Research (SBIR) program. It was
undertaken in response to SBIR solicitation N86-7, entitled "Extensible Databases:" D D86

"Research and development in the database management systems area has traditionally concentrated
on supporting business applications. Recently the design of database systems capable of supporting
non-traditional application areas such as CAD/CAM and VLSI, scientific and statistical applications,
expert database systems, and image/voice processing has emerged as an important direction of database
systems research. These new applications differ from more conventional applications (e.g. transaction
processing, recore keeping) in a number of critical aspects, including data modeling requirements,
processing functionality, concurrency control, recovery, access methods, and storage structures. A
number of groups are attempting to meet the demands of these new applications by either building
interfaces on top of existing relational database systems or by trying to extend the furctionality of such
systems. These approaches may appear promising, but are not likely to provide acceptable
performance. Research is needed which will lead to design methods for database management
systems that are flexible enough to permit extensions to operations such as data modeling, query
processing, access methods, storage structures, concurrency control and recovery."

The work was performed for the Department of the Navy's Office of Naval Research, under Navy contract
N00014-86-C-0605. This Final Report document% the results of Phase I of the project. It records the results of our
efforts defining the project, and provides the background for explaining why we are addressing certain issues.

Intended Audience: Database researchers interested in extensibility. Programming language researchers interested
in persistent storage. Design application builders with complex modeling requirements.

Document Objectives: To convey the results of the SBIR Phase I effort. 4

Knowledge Prerequisites: An understanding of Data Base Management Systems and programming languages.
Familiarity with the Ada programming language. "i

Associated Documfents: "

Vbase Data Model Reference Manual. v ba 6a "

Vbase Language Reference Manuals. V a 6b, VbaS7a

Vbase Functional Specification. Vbas6c

Vb-se Technical Overview.Vba g7b

1.1 Project Overview
The purpose of this three-phase SBIR project is to research critical aspects of extensible databases. Figure 1-1 (see
next page) summarizes the the relationship between activities, milestones, and documents for the UNIVERS project.
Phase I investigates the technology and defines product requirements. It also evaluates the feasibility of the product.
Phase II builds a working prototype of the product. Phase III commercializes the technology, making the product
generally available and supporting it in the marketplace.

Ontologic has developed an effective solution to extensible databases, which we call the Vbase Object Manager.
Our approach to the UNIVERS product is to design methods providing extensions to Vbase which will be useful to
application developers. In pa.-ticular, we address the issues of using the database in large design applications %%hich
have significant (but unique) data modeling and storage requirements.

Ontologic, Inc. 1-1 April 27. 1087
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Figure 1-1. Development Process Model

This SBIR project focuses on the interface between our Vbase object-oriented data base product and the Ada

programming language.DDs3 Our goal is to provide an interface which makes effective use of this powerful object
technology, yet which respects the philosophy of Ada and its compilation semantics. This approach meets the

demanding needs of design applications with complex and evolving data modeling requirements.

1.1.1 Phase I Goals

* When we applied for support under the SBIR Program, we were in the early stage of thinking about what an object-
oriented database product should look like. Between the proposal and the time the Phase I Contract was awarded

the Vbase product development proceeded. By the time work started for the SBIR Phase I effort, we had designed

and essentially developed what we had proposed in the original submission.

In an effort to salvage maximum value under the SBIR Contract awarded, and consistent with the basis of then

original proposal, we have researched issues concerning the extension of our product with an additional language l
interface, and have selected Ada as the target. We have now completed the exploratory work of evaluating Ada

Ontologic, Inc. 1-2 April 27, 1987
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and methodologies for making our database product available to Ada programmers, and thus making an extensible
database available to them.

We have found a unique level of support in Vbase for providing the Ada world with integrated, persistent storage of
data. We found significant synergy between the Ada philosophy about abstraction and type-enforcement and same
concepts in Vbase (which we've implemented as extensions to the C programming languageKcrTs). We have also
begun to identify limitations intrinsic to Ada.

This effort, however, has converged on what appears to be a "best" strategy to providing object-oriented database
support in a manner consistent with Ada philosophy. We approached the problem from the point of view of doing
the best that can be done to support Ada programmers, yet accepts the limitations within which they normally work
(such as static type checking).

1.1.2 Work Efforts

The Phase I effort investigates extensible database technology and defines requirermp'. ,or UNIVERS. To this end.
we pursued four activities:

* Examined design application needs to establish basic objectives and criteria for the system.

• Examined Ada language issues relevant to persistent object storage.

* Described an Ada/Object Oriented Data Base interface.
* Assessed the feasibility of building the interface.

This document is the only deliverable item for the first phase of the product development effort. It records the
results of our requirements analysis and high-level (architectural) design.

1.1.3 Results

Phase I identified several issues for extensibility in databases. We feel that one of the central concerns is flexibility
and extensibility in the data model. We selected an approach which combines the concepts of abstraction and
modularity from programming languages; persistent storage from database systems; and objects from r, earch
prototypes.

Phase I also investigated the feasibility of building the Ada interface. The semantics of the two systems are similar
in many respects, yet differ significantly in detail. We feel that the UNIVERS product is frLs ible, but that there are
certain issues which require further study:

* Integration of the type systems of Ada and Vbase, and the degree of type checking available,

* The difficulty of translating Vbase Data Model information into Ada package structures in the Ada program
library,

% The compatibility of specific Vbase constructs (for example, iterators and exceptions ) with Ada,

* The interaction of representation specifications, storage pragmas, and the Ada compiler

The Phase II effort will build a prototype of the product, to examine these issues. We feel that Vbase, as an object-
oriented database, embodies the necessary technology for database extensibility. The concepts of inheritance and
refinement provide superior support for extensibility, with a database system providing performance which meets
the most demanding needs of CAD support systems. We selected Ada as an interface to Vbase for two reasons:

1. It integrates, in one language, much of the support for abstraction and modularity we support in Vbase.

2. Its standardization guarantees wide availability and a great deal of consistency between implementations - it
should be a reasonably stable interface.

The combination of Ada and Vbase provides a powerful system which meets the needs of design applications. The
architecture we've defined presents the system in a flexible, yet consistent, package which should be easy to use for
design application builders used to working with Ada. It also provides a unified Data Definition and Data
Manipulation interface through a minimal extension of the Ada language.

Ontologic, Inc. 1-3 April 27, 1987
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1.2 Overall Structure of the. Document

This report describes the extensible database issues, defines the integrated language, and presents the basic
facilities of the UNIVERS product. It details the behavior of the system: the types, their syntax, and their semantics.
It also includes examples of how the behaviors can support extensibility in the database.

The objective of the Phase I report is to check the interface description - whether it supports the necessary degree
of extensibility, and whether it provides an adequate basis for implementation in Phase II. The primary focus of
Phase II will be engineering an Ada interface to the existing product. The result will be a working prototype of an
object-oriented language providing access to persistently stored objects.

1.2.1 Requirements

The first few sections of this report describe the requirements for the UNIVERS system:

Section 2 Background on design application needs and extensible database support issues.

Section 3 Basic concepts of abstraction, types and behavior, and object-oriented systems.

Section 4 Issues surrounding an Ada programming language interface to the Vbase system.

1.2.2 Architecture

The next few sections describe the alternatives and selected approach for the software to be developed in the Phase
II effort:

Section 5 Approaches to an Ada/Vbase interface. A summary of our selected approach, which features a
pre-processor and an interface package in the Ada program library.

Section 6 Pre-processor and the language constructs it recognizes.

Section 7 AdalVbase interface and the services it provides.

1.2.3 Extensibility Examples

The final sections demonstrate the concepts we've explored, by providing examples of database extensibility. The
report concludes with a summary of our results.

Section 8 Extensibility examples, using the language, interface package, and data model we've defined.

Section 9 Summary of our analysis and conclusions of Phase I. Recommendations for Phase 11.

1.2.4 Supporting Material

The other sections contain much of the detail from our Phase I work efforts:

Appendix A Glossary of terms.

Appendix B Definitions of acronyms.

Appendix C References.

Appendix D Grammar of the language which extends Ada for persistent object management.

Appendix E Software listings for the recognizer developed to check the grammar and interface definition.

Appendix F Kernel data model for an extensible database.

Ontologic, Inc. 1-4 April 27, 1987
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2. Background
This section discusses the background and rationale for the project. In this section, we examine the basic

requirements for any proposed extensible database solution, and investigate the reasons traditional database and
programming language systems fail to meet the needs of design applications. We considered the most demanding
database support requirements: Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM)
systems.

For the past several years, it has been recognized in the CAD/CAM community that currently available database
management technology does not address basic problems of the engineering process:

• Complex relationships between design, manufacturing, and commercial databases.

a Designs themselves becoming an order of magnitude more complex with each decade.
* Explosive creation and mutation of user requirements and technology mandates.

* Different functional orientations on the same data, for example, pipes as structural parts and as hydraulic parts.

* Iterative design, requiring versions and alternatives.

9 High-performance, high-resolution graphics display and manipulation.

- Heterogeneous hardware and software, collected in attempts to meet requirements without a single, integrated
solution.

Distributed computing, across offices and the country, internationally, and in space.

Lack of solutions to these problems have hindered growth and competitiveness of CAD/CAM engineering systems.
2.1 Design Support Needs

The strongest initial need for extensible databases comes from users of non-traditional data in the areas of
CAD/CAM/CIM, and also VLSI design. These users have complex modeling requirements which require
abstraction mechanisms not provided in traditional database management systems.

Engineering design is the process of building up a model of a complex artifact. The artifact itself may be
decomposed into hundreds of other components. And at any level of the decomposition there may be several logical
ways of looking at the design as well as several alternatives for its physical realization.

The database requirements of engineering design support applications are in some ways significantly different from
those of general business applications. It must support a wide range of data types. Its concurrency control, and
transaction management must support long transactions where deadlock and transaction back out are not acceptable.
And it has to model the successive versions of evolving designs; their configurations and consistency.

2.1.1 Expressing Complex Models

The first requirement of a design support database management system is a data model which is strong enough to
bring order to this complexity. In design applications, there are two components to this complexity: the large
number of different data types, and variety of interrelationships (and attendant semantic constraints).

2.1.1.1 Diverse Data Types One key aspect of modern design systems is the ability to combine diverse types of
data, most often text and graphics. An example of this is the research into the Notecards application by the CIA.
This application allows reports containing text and graphics, most typically annotations of line drawings derived

from satellite images, or annotations of maps. Studies by the agency have demonstrated that the ability to include
visual representations along with the text of the report greatly decreases the chance that important information will
be lost in the "filtering" process which takes place when analysts submit purely textual interpretations of visual
information.

As another example, we have talked informally with researchers in medical imaging at the Dana Farber Cancer
institute, who use multiple CAT scans to generate 3-D images of complex bone structures (such as hip socket joints
and facial structures) for use in surgical simulation. These researchers expressed a strong desire for a system to

Ontologic, Inc. 2-1 April 27, 1987
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reduce the amount of custom software necessary to implement the simulations (currently it is all customized), and to
provide greater efficiency of both the storage and run time areas in the system.

As a final example, tools for a Computer-Aided Software Engineering (CASE) environment need a full range of
atomic and composite data types. One important type that appears in many CASE applications is directed graphs.
CASE tools might store and manipulate parse trees, flow graphs, dependency graphs, and PERT charts. In today's
DBMSs, one must store the graphs by storing the edges in relations, and must manipulate those graphs using
standard relational operators. Many of the fast algorithms for manipulating directed graphs are not easily expressed

using relational data structures and operations.

2.1.1.2 Complex Relationships Another area worth mentioning is semantic databases, sometimes referred to as
knowledge bases. These areas are the foundation upon which expert systems are based and require systems which
provide far greater support than traditional systems in many areas. Their greatest needs are in the incorporation of
the operation abstraction and the support of multiple inheritance which greatly enhances the semantic modeling
capabilities of the system.

For example, a CAD application object can represent a machine part. The static properties of the part might be its
geometry, material, weight and color. Its dynamic behavior might be specified by functions that calculate stress,
deformation under load, thermal properties or anything else germane. The system should be able to represent the
semantic structures directly in the database, typically derived from the raw data. For example, the "length" attribute
could be calculated by procedure, rather than stored explicitly.

The DBMS should check the integrity of objects relative to their type definition. Database objects may have
integrity constraints that are more complex than can be expressed in the type definition language. For example, one
may have a style checking program that determines whether a document is consistent with an organization's
standards.

The DBMS may offer a trigger mechanism (also called derons in Al systems), similar to exception handling
mechanisms in programming languages. For example, one could define a trigger on document objects, which is
activated by the "check-in" operation, and causes the style-checker to be invoked. Triggers can also be used as an
alerting mechanism. For example, a user can check out an object for reading, and leave a trigger in case someone
else wants to check out the same object for updating. The action part of the trigger simply sends a message to the
first user.

2.1.2 Design Evolution

Commercial database management systems are what we term "shadow" systems. They track the real world. Since
the real world has one current state, the database has one current state. That makes sense in the commercial
applications these systems were designed to handle. In design support applications, however, it is precisely the
versions and theoretical alternatives which are of interest.

Concurrency control in business DBMSs is based on the notion of global consistency. A transaction takes the
database from one globally consistent state to another. In a design database, this notion of consistency is not useful.
A design database may not achieve a globally consistent state for weeks or months; in fact, it may never do so over

the period that it is useful in supporting the design process. The point at which it achieves consistency is by
definition the point at which design is complete. At any particular point in its evolution, specific version of specific
portions of the database may be consistent with some portions of the design, but not others.

2.1.3 Separation of Concerns

Two keys to flexible use of an extensible system revolve around the separation of concerns. The particular issues
are Specification/Implementation concerns, and Specification/Representation concerns. Incremental additions (type
characterizations, subtype inheritance) to the external behavior should be clearly separated from the implementation
of the behavior. The implementation may include unique data structures and storage layouts, but this is not
required. However, without a clear separation between behavioral specification and implementation, incremental
additions to behavior would be much more difficult. Another element in extensibility is the distinction dran
between the specification of a type and its representation. This distinction allows custom reprcscntations to be

defined for different types of data.

Ontologic, Inc. 2-2 April 27, 1987"

-"a, ",' .- ,,""." ",""." ".-- .' " '.'-'.'.'.'. .- "," -'..'o."...,'.-...-..'.."...-'..-.,.........,...'.-.-.".•".....•..."..."'.."...........-...-...- ',v".- ; & -, .......-



SBIR Phase I Final Report Background UNIVERS Product

Without this separation, the application programmer would be forced to bind the representation details into the
application, thus making it less portable and less maintainable (and also making it more difficult to "tune" the
database for performance). There are representations which can be made highly efficient for each particular type of
data, independent of the representations of the other data types:

* 2D and 3D graphics

* geometry

• solids models

• matrix-basvi analysis/simulation data

9 cartographic data

,, digitized images

* voice

In addition, an application may wish to use this feature to integrate data from a "foreign" DBMS or application. The
representation of index and data layout provides an avenue for retaining compatibility with existing data. These
data may represent a significant investment, particularly with design application developers who have tried to use
existing database and programming language approaches.

2.1.4 Degree of Integration

One of the criteria for a useful extensible system is the successful integration of data definition, data manipulation,
. and general-purpose programming languages. Ideally, the users of this system should have a single language for

expressing each of these aspects. The same mechanism which defines and manipulates objects in the database is
available to define and manipulate the description of the database itself:

* Abstract description (properties and operations)

" Code to implement the operations (methods)

" Results of computation (exceptions)

• Storage representation (pragmas)

Extensible representations allow the possibility of run-time interpretation of the data structure and other elements of
the schema. This run-time extensibility may require building self-describing structures at run-time. Since the
surrounding structures used in these descriptions are not static, the database should provide a procedural
implementation of properties and operations defined over objects in the database. Therefore, the code which
implements these procedures must also be part of the database (and therefore also available at run-time). This
integration permits a great deal of flexibility, and provides opportunities for optimization.

2.1.5 Efficient, Persistent Storage

Computer-aided design places two distinct demands on performance: it generates a great variety of data, and it
generates a great volume of data. The system should provide mechanisms for efficient storage and manipulation of
large textual databases through the ability to store generic objects of any size and to implement efficient, ty'pe based
retrieval methods. Similarly, these same abilities should allow efficient storage and processing of non-textual data.
For example, satellite images are often large in their original format (1-20 megabytes of raw data).

Developers must be able to dynamically create types and store instances of those types in the DBMS. Among the
more challenging data storage requirements for data handling multiple versions of data objects and large, variable-
length objects.

2.2 Past Approaches

This subsection describes some of the problems with the mechanisms we use today to provide extensibility in
persistent storage. Programming Languages and Data Base Management Systems are two approaches to the
problem. They have different, complementary advantages and disadvantages.

Ontologic, Inc. 2-3 April 27. 1987
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A programming language is the notation used to specify an implementation of an algorithm which can be executed
by a machine.Row80 A Data Base Management System (DBMS) is a general-purpose tool that accommodates the
logical structuring, physical storage, and control of data; and that provides access interfaces to databases. McLSO A
DBMS manages data by providing mechanisms for data definition and manipulation, including integrity constraints
and associative retrieval. Traditional DBMSs allow data sharing among several users, including data dictionary
services. They are organized to efficiently store large amounts of data, and to guarantee data will not be corrupted
due to system or media failures.B er87

2.2.1 Expressibility

The necessary first step towards providing extensibility is being able to express it. The builder of an engineering
design support application defines a set of types which models the entities of interest to the application. These types
are defined as subtypes of the built-in types, and so they automatically inherit the basic structuring behavior defined
by the built-in types.

Database models have historically focused only on the properties: they provide only a generic set of operations
(Join, Project, Select) which operate on the containers (records and tuples) which are the only constructs the
database provides for modeling real world objects. Programming languages have taken the opposite bias, modeling
everything as an operation. Programming language systems such as SmalltalkGo183 or Flavorswei8l tend to force the
type definer to specify operation triples (getfoo, set foo, and initfoo) to handle what are really p;operties.
Programming languages and databases have different notions of expressibility, and of just what kinds of things can
be extended.

2.2.1.1 Programming Language An extensible language supports syntax, control-structure, data type, and operator
extensions. A syntax extension allows the programmer to modify the syntactic structure of the language. Typically,
the language allows the programmer to extend the data space by creating instances (Variables). In recent

languages. the programmer can also express new data types.

Data "Ypcs New data types are specified in terms of a small, fixed set of type constructors, in some languages the
semantics for built-in primitives (for example, print) can be extended to work on the new data types.

Relation.%iaps Programming languages allow the programmer to define relationships between objects using pointers.
In Ada, the.se are called access types. Ada uses a different terminology to avoid the connotation of unsafeness
usually ass o'iated with pointers. Ada pointers (that is, objects of an access type) are constrained to refer to objects
of one type. Since access types can be part of record type definitions, the description of relationships can be
extended from individuals to types.

Operations A control-structure extension changes the language control structures. An operator extension defines
the semantics of an operator designation when applied to user-defined data types. For example, the plus operator
(',') could be defined to be concatenation when applied to two string values. Data type and operator extensions can
be used to implement the abstract entities and operations used in an algorithm.

Data structuring facilities mirror those of operations:wir76

TABLE 2-1. Correspondence of Program and Data Structures

Construction Pattern Program Statement Data Type

Atomic element Assignment Scalar type

Enumeration Compound statement record type
Repetition by a known factor for statement array type
Choice conditional statement variant record, type union
Repetition by an unknown factor while or repeat statement Sequence or file type
Recursion procedure statement Recursive data type
General "graph" goto statement Structure linked by pointers
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2.2.1.2 Database Modern database systems are based (directly or indirectly) on the relational data model. In a
DBMS, databases are generally limited to "structured" or "formatted" data. The data are logically organized in the
form of discrete records, each containing a specified number of atomic fields. A DBMS assumes that the database
it manages is considerably larger than its description. That is, a database contains a comparatively small number of
kinds of data, and many instances of each kind. In contrast, knowledge bases typically contain many types, and one
or a few instances of each type.

To the extent that traditional databases have supported extensibility at all, they have done so by allowing only a
limited set of extensions to a particular aspect of an otherwise fixed "vocabulary." Normally, the only modification
that can be made is to extend the database schema. This introduces new pieces of information, but does not allow
new kinds of information; nor does it allow new ways of representing, accessing, or manipulating information.

2.2.2 Encapsulation

The term encapsulation is used here to include a number of related concepts - partitioning, decomposition.
modularity, packaging, etc. The need for encapsulation arises from the complexity inherent in large software

utilization of appropriate constructs supported by languages.

Partitioning should allow some division of a system into modules, with clearly defined interfaces between them.
Modularity provides numerous benefits, such as easier maintenance, performance improvement, and enhancement,
since only small, understandable parts of the system need to be understood and altered at any one time.

2.2.2.1 Programming Language The first modularity construct was the closed subroutine, which was sn
recognized as a useful structuring device and generalized into the procedure mechanism of Algol 60. The svnthc."is
of concepts from modularization. information hiding,CPr72, Par76 and abstraction generated the idea of using modules
for supporting encapsulated data objects, or abstract data tvpes.Ls 74 The first suitable construct was the class of
Simula,Dab 66 later refined in SmalltalkGo183 and C-,+.str86 The clusters of CLU,L is7 7 modules of Modula W it7 1 and
packages of AdaD° D 83 implement the same kind of modularity.

2.2.2.2 Database A fundamental concern of database abstraction focuses on representaion independence. The
desire to separate the meaning of data from its computer-oriented representation has given rise to the notion of
(physical) data independence. A database model is a formalism for expressing the logical structure of a database,
and for providing a basis for manipulating such a database. The actual representation is separately specified. at a
lower level of abstraction. Specifically, a database model consists of four logical components:

I. a data space, which consists of atomic elements and certain relationships among them,

2. type definition constraints, which specify restrictions on the relationships in the data space,

3. manipulation operations, which allow elements to be created and destroyed, and their relationships modified,

4. a predicate lanpuane, which allows individual elements to be identified by their logical properties and selected
from the database.

2.2.3 Flexibility

By flexibility, we mean ease of use for the design application developer. Primarily, this means the facilities
available to gain access to extensions as they are introduced.

2.2.3.1 Programming Language Modern programming languages have complex name spaces. The number of
identifiers in large software system for subprograms, variables, types, constants, and so on is quite large. A
fundamental mechanism for controlling this complexity is the concept of name scope. In Algol, Pascal, and later
languages, name scopes may be nested in a block structure. Appropriate use of block levels helps control the
visibility of identifiers. Languages such as Modula, CLU, and Ada provide individually named contexts. This
provides greater control over the visible identifiers in a program's name space.

Languages with allocators also provide flexibility over individual objects. Normally, space for a variable is
generated during elaboration of it's declaration. With dynamic allocation, the software explicitly allocates spre br
an object at run time.1 Dynamic allocation gives programs great flexibility' in their use of main memory space.
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A final area of flexibility in programming languages is the use of parametric procedures. That is, the ability to pass
subprograms as parameters to other subprograms. The using subprogram may invoke a different actual operation to
carry out a specific operation. This is an instance of operation abstraction, as different actual routines may be
invoked at different times to carry out the same abstract operation. The decision about which actual routine to
invoke can be delayed until run time.

2.2.3.2 Database Databases provide extensibility by schema compilation. Most DBMSs provide access to the
extensions from a programming language interface. Obviously, their flexibility is limited by the restrictions
imposed by the Data Base Administrator.

DBMSs will sometimes provide a few different mechanisms for implementing the same feature. They may provide
these facilities for users to select. For example, a DBMS may provide more than one access method. Users may
select an indexed sequential or inverted index scheme for their data, depending on the expected usage. However,
this sort of flexibility is usually fixed at schema creation time, rather than changeable at run time.

2.2.4 Efficiency

By efficiency, we mean those facilities provided to a design application developer to specify or influence DBMS
performance. These can be for space and/or time efficiency.

2.2.4.1 Programming Language In most programming languages, the concepts of representation and storage are
blended together in the concept of data structure - that is, representations always imply storage layouts. Usually this
is a boon to the programmer, because the exact storage layout implied by the representations used are not important
with respect to the semantics of his/her implementation. Occasionally, however, alignment criteria will force the
representation and its implied storage out of sync. In these situations, the programmer has no recourse other than to
alter the representation into one which generates the required storage layout. Some of the symptoms of this
condition are obvious and not particularly debilitating: variables named unused, sparebits, or padding. Other
times, the distortion introduced into the representation can be quite severe, as shown in this C code fragment:

struct PERSON

char sex;
long SocialSecurityNumber;
People [1000000]:

In this example, a PERSON is represented as a character named sex and a long (32-bit) integer named
SocialSecurityNumber. Because of alignment requirements for long integers, the storage layout for this
representation typically contains a 3 byte "hole". When multiplied by a million people, this may become a large
enough waste for the programmer to worry about. Yet, in a language such as C, the mechanism for removing the
hole is to change the type declaration of SocialSecurityNumber (say char SSN[4];). Changing the type of an entity
is tantamount to changing its meaning. Thus it becomes impossible to have the desired storage layout and the
desired meaning at the same time.

2.2.4.2 Database Knowledge-based systems are databases with more powerful front ends for dealing with the
meaning of data.Sow8 0 The primary difference between a traditional DBMS and an Al system lies in the volume of
data that they process and the complexity of the representations. Databases still tend to have a large amount of
repetition of very few types. In a DBMS, thousands of employees records may all have an identical format: one set
of descriptors is sufficient to describe every record. In typical Al systems, however, the ratio is almost one-to-one:
since there is so little repetition, each item must have its own descriptor. In fact, most Al systems don't even
distinguish data items from data descriptors.

1. In so doing, the program takes responsibility for de-allocating the space. One of the difficulties with this scheme, not unique to
languages, is the dangl.ng reference problem - generating multiple references to an object, deallocating it, and forgetting to
remove one (or more) of the references. Using the referenced space leads to unpredictable (and often disastrous) results.
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In a conventional DBMS, each transaction reads records into its local workspace, operates on them, and writes
modified records back into the "central" database. When the transaction terminates, the workspace disappears.
Usually, the transaction executes for a fraction of a second, and rarely for more than a few hours. If the system fails
while the transaction is executing, the transaction is aborted; and the user is given the opportunity to re-execute the
transaction from the beginning.

It is inappropriate to regard each activity of an engineer in a design environment o be a transaction in the above
sense. An engineer reads data into a workspace, and may operate on the contents ot that workspace for many days.
If the system fails during that period, it is unacceptable for all work on that workspace to be lost. Moreover, the
work of two designers may not be serializable. They may work on shared data that they pass back and forth in a
way that is not equivalent to performing their work serially.

2.2.5 Persistence
An important aspect of design database support, obviously, are the features provided to manage the data on

secondary storage. In particular, we are concerned with the ability to retain information between activations of
design application processes. For extensible systems, we are also interested in the ability to incrcppwntall udd to
persistent storage.

2.2.5.1 Programming Language Programming languages rely on custom input-output operations for persistent
storage of an application's data. The obvious difficulties introduced through duplication and wasted effort are
usually justified on the inability of traditional DBMSs to support design needs with reasonable performance.

The Input/Output (/0) facilities of programming languages use the semantics of the Operating System's file system.
Ada provides some pre-defined packages for 1/0 operations, but these are clearly inadequate to the task of managing
a large amount of data with sophisticated structuring and indexing needs. Managing persistent storage is really the
forte of a DBMS.

2.2.5.2 Database Conventionally, relational DBMSs are designed to store small objectv (namely record,) and sets
of small objects (namely files). Often the system has a small maximum length for either records or fid.-ds, Mhich
makes it impossible to store a large object as a single record.

A popular and important feature of virtually all DBMSs is the ability to retrieve data objects based on their contents.
Content-based retrieval is valuable for many types of design tools. For example, a debugger may vkant to find all
programs that modify a particular variable; a configuration management tool may want to find all modules that are
checked out by a particular programmer; a project management tool may want to find all unfinished modules
blocking completion of a particular release.

In today's record-oriented DBMSs (that is, relational, network, and many inverted file systems), there are four main

considerations in implementing content-based access:

* Selecting index structures that map each value of a field into the records that contain that value. Currently,
variations of B-trees and hashing are the most popular structures in DBMSs.

9 Clustering records, so that all records with a given field value are grouped on a small number of disk blocks.

e Implementing set-oriented operators that efficiently retrieve a set of records that contain given field values (for
example, relational selection) or that have field values that appear in other records (for example, relational join).

e Implementing an optimizer that transforms an algebraic expression of set-oriented operators into an equivalent
expression that executes more efficiently.

There are several ways to modify the notion of a transaction to suit the needs of a design environment. One way is
to ensure every transaction is short - so short that the abort of a transaction is no more than a minor incom enience
(for example, check-in or check-out). Longer activities (for example, fixing a bug. adding a feature) may consist of
many transactions.

2.3 Criteria

Based on the analysis of the previous section, we can identify the basic facilities an extensible database .shOuld
provide:
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" expression of new data structures and data storage layouts

" incremental extension of properties and behavior, ideally as refinements of existing descriptions

" improved response time for gaining access to new database structures

" access to database extensions (by existing applications and/or utilities) without recoding, and in some cases
without recompilation

TABLE 2-2. Summary of Design Needs

I Criterion Design Support Needs
Express complex modeling through objects, types, operations, and relationships.

Expressibility Enforce semantic restrictions through strong typing on properties.

Modularity Separate specification from implementation of behavior.
Cluster properties and operations into abstract data ipe descriptions.
Be able to dynamically create and access objects, types, operations and

Flexibility relationships. Handle exceptional conditions.

Efficient Separate specification from representation, express compiler and storage pragmas.

Persistence Rely on automated storage management facilities,
which include concurrency control, associative retrieval. etc.

Table 2-2 summarizes the needs of design applications. We have focused on four areas of support for extensibility.
These are extension expressibility, modularity, dynamic (run-time) flexibility, and efficiencv. FS,

2.3.1 Expressibility

We need to support extension not only to the information content of a database, but also to the kinds of information
stored (including the representations for that new data). The goal here is to unify the features of records for
example, random record access and fast compiled access code) with those of tuples (for example, indexes on tuples
and dynamically defined tuple types) with good performance relative to the features used. We want to pro'ide
uniform access to data structures, and avoid having programmers continually re-invent the facilities to type,
structure, index, link, robustly store, concurrently access, and cache data stored in primary and secondary memory.
This is accomplished by extending the notion of a database schema to include a description of the storage layuts
access paths, manipulations, etc, which the system uses to implement a given function. The user is given access not S
only to the "external" functions supported by the database system, but also to the features which support those
functions. The system's "meta-schema" then becomes extensible in the same way that an external schema is
extensible. This allows extension to any part of the system.

2.3.2 Modularity

The impact of a given extension to the database should be clearly delimited and isolat _ ed from semantically unrelated _
areas. The question of how information should he localized within the system - of %% ho should know %k hat - is of
critical importance to any large or complex application. A modularized extension reduces the increnwntial effort of
making extensions, and allows the system to perform certain functions automatically (for example, recompiling
affected modules).

2.3.3 Flexibility

There are alternative approaches to providing extensibility in databases: (iff-line, as in traditional Database
Administration schema changes (or a manual'batch database load'unload facil., ). The time scale for this operation
(from request to completion) is measured in days. Compile time. for example special Type definition transation".
This reduces the time scale for application availability to minutes or hours. Run Time, such as incrementa1 t.pe
definition or object creation code embedded in the application The time scale here is in seconds.

Existing DBMSs provide compile-time extensions s% ta schema ,.ornpilationiT ro meet tfhe repnse rne and a .
requirements., these extensions should be a%ailable as soton as they are dfirned iat run time) lhis i i,sN
application-level run time access to the database scnhea
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In the highly volatile environments typical of design applications, it is often unacceptable to take the database off-
line in order to specify an extension. By dynamic extensibility, we mean the ability to extend the database without
significantly impacting the performance of other, on-going applications. Therefore, in our approach to this project.
we will focus on compile- and run-time methods.

2.3.4 Efficiency

Large applications invariably have areas which are performance or resource critical. If processing an extension to
the database causes these areas to fall below a certain minimal level of acceptance, then the extension might just as
well be inexpressible. It is necessary, therefore, that extensions are not "pasted on," but are incorporated directly
into the system at the same level as the initial system features are incorporated.

The DBMS must cope with different representations of atomic types. The differences may be matters of machine
architecture (for example, byte-ordering), programming language (for example, representation of strings), or tools
(for example, representation of trees). The DBMS must know the representation of each type as it is stored and as it
must be presented to users. The main efficiency consideration here is reducing memory-to-memory copying of data.

A DBMS must be able to store large, variable-length objects, such as documents and programs. Some large storage
objects that are today stored as a single unit should be decomposed into smaller pieces, to take full advantage of
DBMS facilities. For example, one could store each of a program's procedures together in a single object, as is
typically done with file systems.

To avoid losing the partial results of a long-running transaction, it is desirable to checkpoint the activity
periodically. Higher level, nested, transactions may be useful. Should one of the subtransactions fail, the entire
transaction is not aborted. It may be useful for the DBMS to maintain a tree-structured history of the transaction
and its subtransactions. The DBMS may allow the user to abort incomplete transactions, and undo or redo
completed ones as a form of backtracking under the user's control.

The efficiency of the extension should be no less than the efficiency of the underlying database features; nor should
it be any less than could be achieved by the implementor alone, without the database system. If we can develop a
single language, and implement an extensible database using one language processor, we should be able t( ,ain an
additional benefit from stron yping: the ability to optimize run-time performance from compile-time analy,.

Our goal is to combine the expressibility of modem programming languages and the persistent storage man,:,,_'vment
of databases with the inheritance/refinement mechanism of object-oriented systems to provide an extensible
database system. In the next section, we examine the fundamental concepts underlying the successful features of
databases and programming languages which support design applications. We also explore the unique features
which object-oriented systems contribute to an effective solution.
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3. Concepts
Figure 3-1 summarizes the discussion of the last two sections. Developments in programming languages.
knowledge bases, and database systems are trending towards the same result: object-oriented technology. The
inadequacies of existing technology is the driving force behind this trend.

Properties Operauons

Machine
Word

Add: Co structors, Call &IReturn

Basic Closed

Types Subroutine

Add User Definition. Arguments iLocxal Varn

Records Specifiation
Implementation

Add In 'nience. Refinemn )i"PatchInig

Obects

Binding Data and Process

Figure 3-1. The Trend Toward Objects

This section describes the successful concepts these approaches bring to support of design applications, such a,,
abstraction and data types. This section also introduces object-oriented systems, and the qualities which make them
particularly attractive for extensible database systems. It concludes with a summary of the technical features %k hih

hold promise for providing support for an extensible DBMS. Our goal is to integrate these features in the UNIVERS
product.

3.1 Abstraction
The way people normally deal with complexity is through abstraction. All languages provide an abstraction (t a
machine. Control abstractions are provided to specify the sequencing between statements in a program t'r1

example, conditional branches) and data abstractions are provided to specify the entities and their operations uv.d
in the algorithm (for example, arrays with selection and assignment of individual elements).

A control abstraction provides the ability to extend the base language with new operations. Data abstraction 1, a
mechanism which focuses on certain features of data and temporarily ignores other features, for the purpi,,e ,t
simplifying complex information. Data abstractions extend the basic types .ith new types The it1i.,i, (it.",d 0 ,.

below, which form the central core of the motivation for the Object Manager, are general en,,wgh to he (il use in c
construction of almost any application environment. They are of particular use in design en. Ironments. beau,
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the complexity of the design task. The more complex a data set is, the more it can benefit from the simplifying
effects of data abstraction.

The data abstraction principle is that calling programs should not make assumptions about the implementation and
internal representation of the data types that they use. Its purpose is to make it possile to change the underlying
implementations without changing the calling programs. A data type is implemented by choosing a representation
for values and writing a procedure for each operation. A language supports data ahtraction when it has a
mechanism for bundling together all of the procedures for a data type.

Parameterized data abstractions define a hierarchy between types. The parameterized absraction is a generalization
of an instance of the abstraction which has a particular value bound to the parameter. Note that type parameterized
data abstractions usually have some generic procedures.

Exceptions are types which enforce simple and consistent handling cci currs aind tiher unusual circumstances.
Operations and their methods are designed to perform certain tasks. Ilosseer, in ,onic c acs a method's task may
be impossible to perform. In such a case, instead of returning normally, which would inipl\ successful performance
of the task, the method should notify its caller by raising an exception. They arc primarily a mechanism for
communication among programs. A failure occurs when the abstraction is "brokcn" and no longer meets its
specification. Li's6

herators provide a generalized looping construct and are used to examine ci, element (f an aggregate, one at a
time. Aggregates include all collections of entities, such as arrays or sets. tie iteration abstraction is a
generalization of the iteration methods available in programming languages.

Conventio: al commercial database management systems support onl' one t\ pe ,, a,,i;rii ,in - in.sta , i an-
instance-or). In a CODASYL system, a record is an instance of a record t\ pt:c a part , ulai 'et is an instance otf a slt

type. In a Relational system, a tuple is an instance of the type detined b\ its contaiin. rclaion.

Design applications also use reah:atcn ( an-implementation-of ) and a, c,,1. ,; i a-nt'riiher-of

Artificial Intelligence knowledve representation ssstemis has c ,icr niuwn 1', . 17P i,ith'd tcs o ilher Li.

abstractions:

* generalization (variously referred to a-kind-or or is a'). and

* aggregation ( a-part-of or "consists-of')

We focus here on three kinds (f abstraction: ieneralii/ation, a(.regalion. and instantiation.

3.1.1 Generalization (A-Kind-OJ)

Types are related to one another in subtype.supertype hierarchies. The onipleiner.ir% notion is cpcal::t,,i

Given a pair of hierarchically related types, the more general one is termed the ,%u,, :., ,,; itd the more spe.i ti1 (.Ie
the subtype. What gives this notation its power is that it seres as the base tor an aictimir niieritance rneh.ini.
The designer need not go through the drudgery of defining common properties n ca. h ',ii\pcp in the hicria h\
This reduces the specification task and also allows a signlicant ,m tease in ri, l. i t r p;Crentaih un

3.1.2 Aggregation (A-Part- 0)

The a-part-of abstraction is ubiquitous in design suppoirt apphiati i i .c , ,.' ,t iher thunes I 1 'in
is in fact often a pr(wess oif specifsing tile subcomp- wncnt ,trn. tnic ,I ,, ...p i * c l lce , il~lLttTct5

concept of dc omposition.

Aggregation shows up in many different fiorm,, h is expli it in file .ibilit% i. nake ., ' , iit Theec cip,

,:an he formed either by inserting thetr member,, anu, i,, 
i't mm, ,,nc u, ,ht c ,, i s. n.ake a Cicr5 l't 1

ssruing do n each item): or by fcrming a predi, ate \hih dscs,ruhc be. l .- il .t.l. t. uf csirple. the i, i
Loritln M ing oif all blue-eyed professional f otball pla.ersl lhe.e ,rcetec.it" .a 'ii, I A .,.Iclht hlss ii h

is an ordering of the elements in the group. an Index cc\er the clemiit. ci.

A.ggregaiur also appears in the detinition o the pr c .'rIu , ct .in elutls t,,lf \C.i., i' l ,,h 11,c1 ficit' l 'i %kc

nught think of Friends as a proipertt, "hich relates cne p i i , r,ut , i ,c, p' ;,' ! 1 I, ( I r A C1ti ,
Ac there being a group of Friend pictpertit's. ea, h of shA h h Ic'l,ics ,cnc jccr.,, i I ... . i hi, tt cut In I

I)h lt , hg I, n \ 1c I .'- In'
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case, the group might be ordered (by how close each friend is), or indexed (by the friend's name), etc. Groups, sets,
lists, arrays, etc, are all examples of aggregates.

3.1.3 Instantiation (An-Instance-Of)

This concept is also called classification. The class of all entities is partitioned along two orthogonal lines into:

1. types and instances

2. objects, properties, and operations.

We say that entities are instances of types. Iype define the properties carried by each of their instances and the
operations which may be executed on each instance.

The usefulness of data abstraction constructs depends on reasonable type-checking rules. Name equivalence defines
two values to be type compatible if the "names" of the types are the same. Structural equivalence defines two
values to be type compatible if the data representation is the same, regardless of how it is declared. Type
constructors can be type-checked using structural equivalence and named types can be type-checked using name
equivalence.

Both abstraction-based and object-based languages have addressed the importance of representation ab.straction -
separating behavioral specification from its implementation. Without dwelling on the advantages of this separation,
it will be useful to define loosely what we mean by these terms. Specifications are a formal way of saying how
something should be used. Implementations are a formal way of saying how something should be built - so that it
meets its specification.

Specifications and implementations are closely related. Specifically, the implementation of abstract objects rests on
. the specifications of other abstract objects. An implementation consists of an active and a passive part. The active

part consists of methods, and the passive part, called representation, consists of data structures. Methods,
representations, implementations and abstractions are related in that a method manipulates a representation (by
using that representation's specification) in order to implement an abstraction.

3.2 Types and Behavior
An entity is any separable and identifiable piece or nexus of information. An entity is an. thing to which one can
refer. Examples in the real world include: a tree; a leaf of a tree; a color; the concept (type) 'tree"; a particular
species of tree; an operation on a tree (for example. cutting it down); a piece of wood; a group of pieces of %ood; a
table; a dinner party; a person; a relationship between two people.2

In general, the only things that must be true of all entities are: they are instances of some type, and they have
behavi', If something has no types, then it has no behavior. If it has no behavior, then it has no distinguihing
characteristics: it cannot be distinguished, and from the point of view of the Object Manager, does not exi t If
something does have behavior, then it can be observed, potentially manipulated, and classified according to that
behavior. We define behavior in terms of the properties which an entity has (or can ha% e, and the operations '. ihich
can be applied to it.

The nexus of information about behaviors common to a group or class of entities is called a type, The role of a type
is to keep track of and manage a group of behaviors. Every entity which has that group of behav iors is said to be a
member of the class of the type. or simply an instance of the type. The type manages (keeps track of, implements)
the behaviors which it aggregates, and is therefore sometimes called a type nuinaler. An entity can he an instance
of more than one type. and it gets behavior from all of its types. |-ach type then has a partial hand in implementing
the behavior of the entity.

2 Note thai an entiv, need not hdve a physical e i tence a con,.p is still taken t,, be an entlio ,n cnills can be tranMen. &%. in Ihe
cas.e of an opera ion or action in ihe icrn% in Ahih the ()htcl Man4ger dea1% "i1h enuri.c.,. an c l' tan cu[icr trid lotr
•urncthing in the retl world, or it can be pur-IN s.,nthcti,. that i', it niight ,uand lwr trithing *ther than i ,li
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A type defines the behavior of its instances. Every instance of a type must obey that type's behavior % pe ifiaton.

The type guarantees compliance not only by specifying its instances' behavior, but also by implementing that
behavior. There are two major pieces to any type definition: the type's behavior specification (or simply its spc=)
and its implementation.

Not only objects, but also properties and operations, have types which describe their behavior. These types are
first-class entities, which are denotable in the language, and can be manipulated just like any other entity. Because
the behavior of operations and properties are described by operation and property types, it follows that there are
operation and property subtypes. 3 One of the most serious drawbacks of the Smalltalk class of object systems is
their lack of any notion of type specification. There are simply objects.

Early object-oriented programming languages like Smaltalk were constrained by a loose notion of subtypes and a
commitment to late binding. When an object invoked an operation or referenced a property, the interpretor
followed a pointer from the object at hand to its type defining object. It then looked up the operation selector in a
dictionary (andLor repeatedly went from the type defining object to its supertype). Finally. it set up a context for the
method and eventually executed its code (again interpretively). This applies both at the instance level and the data
structure level (in Smalltalk: instance variables).

The benefits of strong typing are well known:

" strong typing resolves many more errors at compile time. Compile time errors are generally easier to analyze
and correct than errors of type mismatch that occur at run-time.

" strong typing of object data structures provides superior specification of the system. Rather than rel) in2 on
naming conventions of programmers to convey type. data structure type declarations provide a clear
specification.

" A strongly typed system allows the language processor to do far more analysis at compile time. This analsis
can eliminate the need for run time checks. For object systems, this analysis allows methods to be statwafl\
bound as well. This eliminates a large atmount of the performance overhead normallN associated with obje't
syv stems.

3.3 Object Oriented Systems

Over the last decade or so, software research has been converging on a very poserful model called the ob1etS-
oriented or simply the object model. The term object-oriented programming has been used to mean different things.
but one thing these languages have in common is objects. Objects are entities that combine the properties of
procedures and data, since the) perform computations and save local state.slc " Uniform use of objects contrasts
with the use of separate procedures and data in conventional languages.

More generally, an object can be thought of as an abstraction of some "real world" entity. It is thus a pood
paradigm bout to express the problem and its solution. It turns out the objekt model is a good %kay to model both
real, external objects in the application and internal implementation objects in the computer.4

Object-oriented programming emphasizes the view that a program largely describes the definition, crea in.
manipulation of, and interaction among, a set of well defined and independent data structures, called objects. Nli t
of the object-based formalisms are essentially based on the same fundamental concepts:

Objects Objects are entities which contain state information. Each object has some predetined attributes or
properties which collectively form the internal state of that obiect. In addition. for each obje't
certain actions or operations are defined. An operation performed on an object may chance its

3. ").pes arc related by subtypcsuperlype properties. These properties structure the space of ,pcs into a directed as, h, )2raph
(DAG).

4. A software design approach with the same emphasis on realtworld modelling can be found in the Ja, kson Stu turvd Pro'zrin :ung
and Jack-son System Design meth(os.A0' : 5 ',
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internal state (the value of one or more of its properties). An operation may also cause other
operations to be invoked on other objects.

Types Types define a collection of objects with similar behavioral properties. The behavioral properties of
an object refer to the various possible states of the objects (that is, the properties) and the possible
actions that can be performed on a given object (in each state).

Instances An instance of a type refers to a concrete object, which belongs to a given typ. An instance of a type

is created from the type definition. Once an instance is created it may behave as specified by its type
definition.

Inheritance Types may selectively derive some of their behavior (properties and/or operations) from one or more
other types. This mechanism is called inheritance, and it applies only to types. Any instance of an
inherited type inherits all its behavior from its "supertyp(es)".

Defaults Some initial state which characterizes all objects in a given type may be specified by a default value
mechanism. If a default is specified for a particular type, then all instances of that type are created
with a state with the default values selected.

3.3.1 Objects

The object model is based on the object an entity that has both static state and dynamic behavior. The object is a
good model in the problem space because it, like the real objects it models, can express static and dynamic
properties. The object is also a good model in the solution space because it encapsulates both static state and
procedure into a single programming module.

An object is an autonomous module. It has its own data and procedures so that it can model both static and dynamic
behavior. It is accessed through a well defined interface and appears to the rest of the system to behave just like the
real object it models. In this respect, object-oriented system resemble the abstract data type approach in
programming languages. The other information associated with an object, for instance, its representation) is hidden
from the users of the object definitions.

Collectively, an object's properties and operations are called its behavior. The term behavior is used to underscore
an object's dynamic nature. Even property access is dynamic since it must be made via one of the object's
operations.5

3.3.2 Polymorphism

There is additional leverage for building systems when the operations are standardized. This leverage comes from
polymorphism. Standard protocols enable a program to treat uniformly objects that arise from different types.
These protocols extend the notion of modularity (reusable and modifiable pieces as enabled by data-abstracted
subroutines) to polymorphism (interchangeable pieces as enabled by method dispatching).

Another important concept in object systems is specialization. Specialization is a technique that uses type
inheritance to elide information. Inheritance enables the easy creation of objects that are almost like other objects
with a few incremental changes. Inheritance reduces the need to specify redundant information and simplifies
updating and modification, since information can be entered and changed in one place.

Specialization and method dispatching synergize to support program extensions that preserve imxrtant in'ariants.
Polymorphism extends downwards in the inheritance network because subtypes inherit protocols. Instances of a
new subtype follow exactly the same protocols as the parent type, until local specialized methods are defined.

5. Some obect systems u." message passing to communicate with ob)ects Mc%,agc sending and mcthl( dipatchin, are t.h torms
of indirect procedure call - with different implication% for performance.
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3.3.3 Inheritance and Refinement

Certain features of Object-Oriented systems make them particularly well suited to fulfill the needs of extensible
databases. One of the fundamental ideas in object-oriented systems is the use of inheritance in type hierarchies.
This style of inheritance has been useful in defining semantic network models for Artificial Intelligence applications,
and for semantic data models in database design. Inheritance is one of the key concepts in object systems. It not
only makes writing type definitions easier, but it determines many of the desirable dynamic properties of object
systems.

The objects of the application - machine parts, paper work objects like Engineering Change Orders, orders,
materials transfers - are modeled by system objects. Objects are, in turn, defined by object type definitions. All
objects of the same type share a common definition. And types are hierarchical. They form a tree with the most
general type at the root. If we were modeling fastener hardware, for instance, the most general type may simply be
called Fastener. At the next level, it is refined into a number of categories - say Screws and Nails. These, in
turn are refined further. At each level the type inherits all the behaviors of its parent (called superr'pe). It adds to
them and passes the composite behaviors to its sub ypes.

An object can represent a software construct as well. It might represent a data entity like a record or an array and
include the procedures for verifying it or expanding it from compressed storage. An object might be a shared
library procedure and include not only the code but also parameters. table values and other static information. For
instance, procedures for dealing with sorted lists might be encapsulated into a single object. The object's static
information would store the collating sequence; its dynamic procedures would include such list functions as sorting
and inserting.

The nexus of information common to a set of types is ca;lled the superrpe, or generalization of those types. The
lower level types are called subtypes, or specializations of the supertype. The role of a supertype is to factor out
common behaviors defined by other types. Ever' instance of one of the subtypes will automatically be gien all of
the behaviors defined by not only the subtype, but by the supertype as well. We say that the subtype inherits the
behaviors defined by the supertype. It is exactly as if the subtypes all defined these behaviors themselves, except
that they only get defined once, thus simplifying the specification task and increasing system modularity.

Types are generalized and specialized by the supertype'subtype relationship. When instances are classified by type
according to their behaviors, there is often quite a lot of overlap between the types. For example. we might note that
broad-leafed trees and conifers both have trunks, photosynthesize, etc. but that they differ in that conifers have
needles, not leaves, and that they reproduce via cones, rather than seeds. Generalization furthers the structure of
types imposed by classification by introducing the notion of a lattice of subtypes and supertypes.

Normally, supertypes are introduced to aggregate common behaviors of a set of types. For example, cars and
motorcycles both have Enginesize properties and Refuel operations. A supertype, called MOTORVEHICLE,

could be introduced for the central definition of these behaviors. The subtypes, CAR and MOTORCYCLE, inherit
the behaviors defined by MOTORVEHICLE, and do not need to define them directly.

The behaviors defined by a supertype may be augmented by new behaviors defined by a subtype. For example,
CAR defines the Drivewheels property, which has value oneof (.front, rear, all ); and MOTORCYCLE defines the
Starter property, with value oneof ( kick, electric ). If a subtype does nothing but add new behaviors to those
defined by its supertypes, then we call it a purely additive subtype.

We also allow a subtype to refine, and even constrain the behaviors defined by its supenypes. For example, BSA
motorcycle (a subtype of MOTORCYCLE) refines the Starter property to only have value kick - because all
BSAs have kick starters. Both property and operation behaviors can be refined by subtypes of the type vhich
defines them.

A subtype typically either defines new behaviors (properties or operations), or changes the delinition of beha'\iors
defined by its supertypes. If a subtype changes the definition of an existing property or operation. then this chan,_e
must be made compatibly with the supertype's original delinition. Such a change is called a refinement of the
original property or operation.

In effect, each type defines a set of objects; its subtypes define particular subsets of those objects. Theretore. an
object variable of a particular type can be used to hold objects of that type and of all .s of that objcct. An
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6p

object variable can be used to hold any of its subtypes in any context, including as an argument to an operation. 6

Furthermore, if the operation has been refined in the subtype definition, then dispatching to the refining operation is
performed dynamically according to the actual type of the argument at runtime.

Type definitions are hierarchical and are inherited along the type hierarchy. Each type inherits all the property and
operation definitions of its supertype. Then it refines them further in its definition, extending them or making them
more specialized. If it has subtypes, it passes all its inherited and refined behaviors to all its subtypes. Thus type
definitions are written incrementally, as additions or refinements of their parents' definitions.

The type hierarchy and the inheritance mechanism can be thought of as modeling the a-kind-of relationship
between data elements. For instance, the Screw and Nail types discussed previously are each a a-kind-of Fastener.
Similarly, a specific instance of the type Screw, say a one inch, round-head, number 6 screw, is a a-kind-of screw.

Properties are refined by adding new properties or constraining inherited properties. Operations refinement is
implemented by enclosure. The refining operation in the subtype is called first. It, in turn, calls the operation of its
supertype. In that way additional processing may be defined both before the supertype operation is called and after
it returns. The supertype operation may also be called more than once (or not at all) depending on what refinement
is required.

3.3.4 Polymorphism and Dispatching

Frequently, the "same" operations have to be performed on wide classes of objects. For instance, we might want to
calculate flow through a complicated piping system. At some level of abstraction, flow can be expressed as a
function of pressure. Unfortunately, in practice different algorithms are used for different kinds of flow elements.
While flow may be calculated from directly from dimensions in simple elements it might be determined from
empirical tables in complex ones. A similar situation is often true for internal operations. While multiplication may
be equally meaningful for scalars, vectors, complex numbers and matrices, the implementation in each case may be
quite different. Ideally, we would like to express the operations symbolically and let the system fit the
implementation to the actual data types involved. Dispatching provides that exact behavior.

Di.spatching is the runtime binding of an operation call according to the type of its principle argument. Dispatching
executes the most refined or most specialized operation determined by the actual type of the argument passed at
runtime. In effect, this allows making generic operation calls applicable to large classes of data and letting the
system find the correct refinement of the operation according to the actual arguments passed.

Methods describe how an object will perform its operation. Operations specify their invocation and termination
behavior; methods are the subroutines which do the work of the operations. When operations are invoked by an
application program, the state and parameters are set up according to the invocation specitication, and a subroutine
call to the method is made. When the subroutine exits and returns to its caller, the state and returned parameters are
handled according to the operation's termination specification.

When a subtype refines an operation of its supertype, it can either wholly replace the method associated with the
supertype's operation, or add new behavior to the supertype operation's method by combining the subtype
operation's method with the supertype operation's method. Method combination defines the interactions and flow
of control between the various methods implementing a single operation and its refining operxiions. The Object
Manager allows both trigger methods and base methods to be combined.

3.4 Summary
Table 3-1 summarizes the features used in these approaches to satisfy the criteria of Section 2.1. Programming
languages are quite expressive, but lack automated storage management. They allow line control oer main

t, Sine a deuhi'p's finition cannot c,'niradict Ihc dctinawin of it% ,upcri pc, alni opcr -.son that catn he ptlrlrynd on a ikpc can
aultomiaicall, h perforined on all its %Lhtlb pe's.
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memory storage, but little effective control over secondary store. Input-output facilities vary widely between
languages, and even between implementations of the same language. Database systems manage storage efficiently,
but have a fixed set of operators and data structuring methods. Database extensibility is awkward, usually via
schema re-compilation (under the control of a Data Base Administrator).

TABLE 3-1. Approaches to Extensible Databases

Criterion Programming Language Data Base Object-Oriented

Expressibility Variables and types Relations and records/tuples Objects
Modularity Subprograms and packages (none) Spec/Rep separation

Flexibility Allocators Schema definition Inheritance, Refinement
Efficiency Representations Indexing, Clustering Representations
Persistence File 1/0 Extensive Clustering, storage pragmas

In the next section, we examine the issues surrounding a unification of these approaches. In particular, we consider
the integration of the programming language Ada with the object-oriented database Vbase.

p.'7
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4. Issues

This section presents some of the issues surrounding the development of an Ada programming language interface to
the Vbase object-oriented database. Our basic goal is to add (transparent) persistence to Ada - unifying the
expressibility of that language with the database facilities of automated storage management. We discuss
programming language issues, database access issues, and application run-time issues involved in achieving this
unification.

Ontologic has been actively designing and developing an object-oriented database product since October 1985. and
had been working with the technology since mid 1983. A complete implementation of a single-user (non-shared)
object-oriented data management tool has been completed and is now undergoing evaluation with a customer-
provided prototype design application as a test vehicle. This initial product will soon be extended to handle multiple
users. At the point in time when it provides for the sharing of data, it will have become a database system. Our
target for public release of the database product is early 1988.

In the process of building this product, we have had to develop not only the product itself, but also expertise in
database system implementation, expertise in language processor design, and many support facilities. We have
learned how to test extensible systems, how to keep them self-consistent, and how to deal with evolution.

We think that the resulting product will be applicable not only to design support applications, but also to a host of
management and commercial applications ranging from Program Management of large development efforts to
office automation, the management of financial portfolios, medical records and many many others. We believe
firmly that the object-oriented model for information and its use will be the next great wave in computer software.

4.1 Vbase Features

The Vbase product consists of:

e A storage manager which relieves the user from a large portion of the effort of dealing with data structures for
objects.

* A collection of Type definitions which provide the intrinsic behavior of the object-oriented system, such as
extensibility, information hiding, etc.

A Type Definition Language for extending the set of Types in the system. This facility is equivalent to the Data
Definition Language of a traditional database. TDL is a database application and uses database operations to
implement its functionality.

e An extended 'C' language through which objects can be manipulated, the Data Manipulation Language of the
product. This extension is implemented as a preprocessor, and the preprocessor is a database application. It can
produce highly efficient database access code.

9 A set of utility programs for debugging extended 'C' programs, displaying and editing the database, etc.

• Soon it will also provide an object-oriented graphics facility built out of the capabilities of the basic database.

The Vbase product is a self-describing, object-oriented, software development environment, and a mapping of that
environment into the world of the C programmer. It provides the C programmer with mechanisms for the definition
of object-oriented data structures, with support for the persistent storage of the objects created, and with a strongly-
typed extension to the C language for reference to stored objects.

As the first step towards providing a complete design software development environment, we created a database
management system with two language interfaces, one for data definition (the Type Definition Language, or TDL)
and one for data manipulation (the C Object Preprocessor, or COP). The Vbase system runs under UNIX 4.2 BSD
on Sun 3 workstations. Figure 4-1 shows the basic components of the Vbase Release I system, and how they
interact with each other. Type definitions of objects are compiled by the TDL compiler. Object functions and
applications programs are written in COP and compiled by the COP compiler. When the application runs, it uses
the run-time Object Manager to access data and invoke operations.

W4
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Figure 4-1. The Vbase System

When we speak about an "object-oriented" facility, we mean to include the following characteristics:

, The encapsulation of data descriptions and the code which operates on that data together to define object
TYPES. Some developers, such as those of the language Smalltalk, have called these encapsulations Classes.

- The ability to create instances of a Type and to operate on the data of the instances (PROPERTIES of the
instances) through the OPERATIONS of the Type. We call such instances OBJECTS.

* The system provides for properties which link two or more objects together by RELATIONSHIPS into complex
objects.

@ Users perceive the system as providing the ability to grasp and manipulate complex objects and object structures
without regard to how big or complex they might be or how their internal representation might be done. Thus
objects are in some sense abstract. It is equally easy to operate upon an INTEGER, a PICTURE or the design
of a Boeing 747. The users need only know what operations are available for each Type, and the system warns
them of potential errors via type checking.

4.1.1 Strongly Typed Languages

The language defines entities. Types are the most common entities. A type serves as the nexus for behavior of its
instances. The basic components of a type are its properties, operations, and supertypes. Properties represent
static behavior, while operations describe dynamic behavior. The supertype definition places the type within the
type hierarchy. Behavior is inherited along the type hierarchy. A type is also a block scope, and may therefore I
contain other definitions along with its central property and operation definitions.

There is a taxonomy of types, with subtypes inheriting both properties and operations from their supertype.

Subtypes can add more specific behavior by specifying additional properties or operations, and can also refine
existing behavior. When an operation is invoked, it is dispatched according to the type of the object of the
invocation.

The block structure of Vbase is different from most object-oriented systems, and certainly very different from most
DBMS schema definition languages. It supports the kind of complex name environment of structured programming
languages, with the same reduction of name conflicts. It also supports path names, allowing simple groupings of
names, and relative naming.

An important feature is the ability to arbitrarily combine program variables and object variables. The language
processing does all necessary conversions to preserve correctness.
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4.1.2 Flexible Operations

In Vbase, operations are viewed as being implemented by a series of executable code fra,_mcL.ts. Perhaps the fl(,,t

notable run-time feature of Vbase is method combinations. Method combination in object systems results A hen a
refining method invokes its refinee. SmalltalkGo 83, for example, provides the super pseudo-variable for this
purpose. The number of fragments is arbitrary, and is the sum of all triggers and methods defined in the operations.
Each operation is associated with a base method and an arbitrary number of triggers.

Triggers can be attached to properties as well as operations to generate "active object" behavior. These bcha to~rs
include the standard ones - "when my QuantityOnHand property gets below 20, issue a new order for 100 mo re
-to more esoteric uses (such as keeping audit trail records of property and operation access for security purposes .
Triggers are most often used to augment create and delete methods. This use of triggers allows the user to insurc
that upon creation of the object, all important semantic restrictions (such as all referent object relationship are
created properly. Delete triggers reverse this to delete all referent objects - thereby eliminating a major sour e of
"dangling references".

Another feature is the iterator. Drawn from CLULiS77, this operation provides the ability to process all elements otf
an aggregate one at a time without having to manually program the proper indexing of the loop. This eliminates a
major source of programming errors - "off by one" counts in loops.

4.1.3 Powerful Data Model

The Vbase Data Model is completely self-describing: all system characteristics except the lowest levels of storage
management are implemented using types. The properties and operations of these system types are freely available
to programmers to use to their advantage. The accessibility of meta level, or dictionary, information has lon! ben a
stamp of DBMSs. Object systems generally allow some access to this information, but \'base goes further to allo
virtually total access to system types. By providing users with access to the system name types, users can create
named entities that will be recognized by system tools such as the debugger and object editor.

We say that the system is self-describing and extensible because the same mechanism which delines and
manipulates objects in the database is available to define and manipulate the description of the database itself:

* Abstract description (properties and operations) via types.

e Code to implement the operations (methods).

a Results of computation (exceptions).

, Storage representation.

Type descriptions are objects. They too have a type description, provided by type TYPE. Since TYPEs are
instances of a special type, they are not much harder to create than instances of other types from the point of view of
the database. The operations which create them are OPERATIONS provided by database TYPE definitions. The
only tricky part is making sure all of the pieces which each TYPE needs are in place and that the names needed to
refer to them get put into the correct place, in the database of course. The Vbase compilers take care of all the
details.

Types can be created as refinements of other, existing types. We call the refinements subtypes and the original a
supertype. This provides Vbase with the inheritance mechanism characteristic of object-oriented systems. 7 In
Vbase, properties and operations of the supertype become automatically available to instances of the subtype. This
creates another form of extension to the database, and fosters re-use of code and incremental programming, which is
very efficient. We made sure that simple instance access - often ignored in object-oriented systems - remained
efficient and simple, so that traditional database access remained acceptable for design applications.

7. This model not only supports but requires complete support for a-klnd-of hierarchics that the current literature agrees is necessarv'
to define the complex data structures and relationships of engineering databases. We extended the model to support a-part-of
hierarchies, which are essential to integrated, consistent design of component parts and their assemblies.
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" decoupling the data model fronm the internal %orkings Af Vhase. so that the data rnt.del it-self carl be enhanc:ed
and extended to fit changing user requiremiens

" extending the Vbase data model %k~ith the user applicat in ciide, ik'sith all of the ivrt irniance _,iin. extenxihility,
and ease of use that that implies.

We made a radical departure from the datahase program en' ironnment 'split and Incoirporated the djtahase mto th
protess nwu,rv of program.. 5 to improve database performance so that our Graphics suhsv stern could ve the
support and performance required for CAD;CAM graphics processing. This solution has onl\ become possible
,A'ithin the last few years as workstation manufacturers have draniaticalls inc-reased the available NMIPS and 'sirual
memory of design workstations, Nkhile bringing dos'n the average cost of wvorkstations to nmake them '\ idely
available.

Bly embedding user application code as ,aton oVhse, we opened the power of' the svsteni tcm user,, At the
same time, we made the task of developing Vbase through future releases easier by using its object -oriented data
model to describe itself.

Another database facility is the ability to cluster objects. FEvery create operation allows the invoker to specify a
clustering object-. Te new object will then be created in the sane segment as the clustering object. Segments are
the unit of transfer to and from secondary storage. Thus, a rumber of' ibjects can be clustered, and J1 hene%'er any
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• one of the objects in the cluster is accessed, all of the associated objects are available. An subsequent references to
one of the clustered objects will not require a disk access. Clustering also provides better space utilization of
secondary storage.

An innovative feature of Vbase is support for inverse relationships between properties of different objects. This
* means that whenever a modification is made to one of these properties, the other object's property is modified

accordingly. This construct solves one of the more vexing problems in DBMSs, particularly relational systems.
* One-to-one. one-to-many, and many-to-many relationships can be supported and maintained automatically using the

inverse capability. Such common relationships a, Parts-Suppliers of Employees-Departments can be implemented
directly with no additional definitions or code. This is a dramatic improvement over most current database systems,
and is not available in current object systems at all.

4.2 Ada Features

We will not attempt to describe all the features of Ada, but instead concentrate on those that relate to describin_ a
\'base system interface. We will evaluate the effectiveness of the interface by its support for extensibility, its ,self-
descriptive" capacity, and its consonance with existing Ada semantics.

4.2.1 Type Checking

Ada's emphasis is on tatic type checking. It is possible to continue to enforce strong type checking, even in the
face of dynamic (that is, run-time) type and object definitions. Our approach is to inte2rate type checking in the

pre-processor, doing as much static type checking as possible. We will rely on Ada's static type checking in the
generated output, and on \'base's dynamic type checking in the database.

Changes in the database which are (in this version of the product) independent of changes to the Ada compilation
library. This presents redundant updating problems only to the extent that users attempt to maintain duplicate
descriptions in the two. Our approach is to automatically generate the necessarv Ada compilation unit, h1',r

example, package specifications and bodies) as output from the pre-processor. This appioa,.h should iininite the
Ada code that users will want to insert independently into the Ada library for database operations.

Vbase provides a mechanism for run-time type definitions. There is no equisalent for this in Ada. althtUh Ada

provides run-time constraint checking. Those users who take advantage of run-time type delinition and use must
rely on the Object Manager's dynamic type checking mechanism, not on Ada's compile-tine checks.

4.2.2 Subtypes and Inheritance

Ada supports inheritance through the derived type mechanism. It has the following features:X) DS3

The derived type belongs to the same class of types as the parent type. The set of %a es for the derived type is a
copy of the set of possible values for the parent type. If the parent type is compo ,te (for example, a record),
then the same components exist for the derived type, and the subtype of Lorresxon :ing compone1nts is the same.

. For each basic operation of the parent type, there is a corresponding basic operation of the derived type.
Explicit type conversion of a value of a parent type into the corresponding value of the derived type (and \ice
versa) is allowed.

If a lefault expression exists for a component of an object having the parent type, then the same default
expression is used for the corresponding component of an object having the detised type.

* If an explicit representation clause exist,; for the parent clause and if this clause appears before the derived tspe
definition, then there is a corresponding representation clause (an implicit one) for the derived type.

e Certain subprograms that are operations of the parent type are said to be dcri, a,!c. For each dervahle
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subprogram of the parent type, there is a corresponding derived subpropram for the derived type.

The specification of a derived subprogram is obtained implicitly by systematic replacement of the parent type by
the derived type in the specification of the derivable subprogram. Any subtype of the parent type is likewk ise
replaced by a subtype of the derived type with a similar constraint. Finally, any expression of the parent type is
made to be the operant of a type conversion that yields a result of the derived type.

Calling a derived subprogram is equivalent to calling the corresponding subprogram of the parent t\ pe, in shich
each actual parameter that is of the derived type is replaced by a type conversion of this actual parameter to the
parent type. In addition, if the result of a called function is of the parent type, this result is converted to the
derived type.

4.2.3 Modularity

Ada provides the classical subprogram facilities for extending operations - procedure and function similar to
those of Algol 60 or Pascal. The Algol-like block structuring allows nesting to control scope and visibility. A
major restriction is the lack of procedural parameters (that is, parameters vAhich are themselves procedures or
functions)." It is possible to write more than one subprogram with the same name, but with different types of
parameters. This overloading of names is a version of compile-time polyonrphis., which provides a great deal of
flexibility.

Ada's separation between a subprogram declaration which defines its external interface, and its body which
contains the implementation details, solves some traditional problems associated \kith procedural languages (for
example, mutually recursive procedures). Ada provides the package construct so that logically related items can be
grouped together. It permits the definition of both encapsulated data objects, and abstract data types.

As with procedures, the declaration and body of a package are physically separate in the program text. Only those
names declared in a specification may be available outside the package. Thus for large programs, partitioning into
packages provides a greater degree of control over the visibility of names than is possible with traditional block-
structured languages. Access to the visible parts (that is. the specilications) of packages is not automatic, it must be
explicitly stated in the "importing" unit. A greater degree of information hiding is available through the use of the
private facility. This allows a type to be specified in a package specification and thus be accessible externally, but
the representation of the type (in terms of other types) to remain hidden.

A further encapsulation facility available in Ada is the ability to specify a procedure, function, or pac'kage as
generic, which allows it to have formal parameters which are types or subprograms. Particular units are
instantiated from the generic units by substituting actual parameters.

Ada also provides separate compilation of program units. Separate compilation differs from independent
compilation provided in traditional languages (for example, FORTRAN, C) in that type checking is carried out
across the separate parts. Whether system components are assembled "top-down", "bottom-up", or in any order, the
visibility and interface information (including typing) is enforced by the Ada program library.

8. Two kinds of derivable subprograms exist. First, if the parent type is declared immediately within the visible part of a package,
then a subprogram that is itself explicitly declared immediately within the visible part becomes denvahlc after the end of the
visible part, if it is an operation of the parent tpe. (rh explicit declaration is by a subprogram declaration, a renaming
declaration, or a generic instantiation.) Second, if the parent type is itself a derived type, then any subprogram that has been
derived by this parent type is further derivable, unless the parent type is declared in the visible pan of a package and the denved
subprogram is hidden by a derivable subprogram of the first kind.

9. However, Ada's generic units allow sL' programs as arguments, and generic in.tantiaiton achieves much the same ef-let.
However, instzntiation is a compile-time binding in Ada, and the flexibility of run time selection of parametnic pro'edurcs is not
available in the language.
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Ada contains pragmas to influence the default behas or st the c stmpjlcr The prt ,,lned pta_,iah M*~
a Plobal "hint" to the compiler to he more concerned Asith either time or spate Oii erL 'I tic pr t-- i
ads ises the compiler to eliminate procedure call os erhead ',or ,pcte uhpr ,,_ram, ( era)! tepl!'

mechanism allows a portable. hut unreliable, mec:hanism for influjenc:ino efltec hr the ni i.1 part. Ad.rc

static tipe chcigto wring the best etiin-fo the compiled c'ode.
Ada allows fine control over main memoryN representations throuph re/Irewntraton tma~r ()e

converted between types with differing representations (for example. packed to unpa. kedj losse er. -\,.i ;)i, i:
no dietmeans to inlec e-n vstojr-age rpeen tatin,

Representation clauses specify % thet\,oth apaoartobmapdntiheudrlmLih--
can be provided to give more efficient representation or to interface %k ith teatures that are otwide the d onionm
lang uage (for example, peripheral hardware). A tv pe representation clauwe aipplies 1, t pc SUch a1 itp
clause applies to Lill objects, that has\ c this type:

9 A leno(th clause- specifies an amount of storage as sociated ss ih a t.ype.,

*An enumervtion representation clause specifies the internal codes for the literals of the enunierati n rsh'e ni
named in the clause.

A n address clause specifies a required address in storage for the entity.

At motone enumeration or record rersnaincas salwdfra ,ien t\ pe. (O)n the other had.d nlorv thke
one length clause can be provided for a given ts pe; moreover, both a length clueand an enuinieran it rre

clause can be provided.) A length clause is the only, form of representation i liuse alhissed for a pv &i is cd 1
parent type that has user-defined deriv able subprograms.

An address clause applies to an obiect. At most one address clause is allossed.

Arepresentation clause and the declIaration of the entity to wkhich the clause applies miust both (.c.Lir it11tWI,ifi 1
within the same declarative part or package spec:ific:ation; the declaration tnU~t occ'ur beLkre the clause. In h

absence of a representation clause for a given declaration, a default representation ot this declaration isdv ri.e
by the implementation.

.4The interpretation of some of the expressions that appear in representation clauses is imiplenientaition deptenJLcer
example, expression specifying addresses. An implementation may limit its ac:ceptance of reprexna fll ,1. , lm-

those that can be handled simply by the underlying hardware.

4. Whereas a representation clause is used to impose certain characteristics oif the mappimi, of an entit oto, ihke
underlying machine, pragmas can be used to provide an implementation \A ih criteria for 'its selection of auc
mapping. The pragma PACK specifies that storage minimization should bt, the main cirieorion "lion selecttnn the,
representation of a record or array type.

Packing means the gaps between the storage areas allocated to consecutis.e conmponents should be mininit.'d It

need not, however, affect the mapping of each component onto storage. This mappini' Canl itselft be 1iluence hslt'

pragma (or controlled by a representation clause) for the component or component t\ype.

The pragma PACK is the only language-defined representation pragma. Additional represcentaiot l~qna l tmu% he
provided by, an implementation. In contrast to representation clauses, a pragnma that is, not acc:epted bhs the

* implementation -. ignored.

10t. Pragmas can be ignorcd if not implenmented in a particular comnpiler Atsn, compiler implementers are lice 1% it&iv cA
.5 pragmas, providing more control.

11. The DEC implementation of Ada provides access to the VMS Record Mianagemnrt Scr\ ic' thr, j-h VU). I .w Wjc ~ilc
RMS allows considerable control over reccord formtat and storage lasmoit, it is a unique Tiw 'fl 1 iahc lo lO!iiI ii

.0
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-At most one representauon clause is allowed for a gi' en t p and a,,e a . repi ,'Mtai F (en, . i' .tI,

alternative representation is needed, it is necessarN to delare a se ond t p., dcri., : til t"c Iftt. and iki ,pc. it. a,
different representauon for the second t. pe.

4.3 Integration Issues

In this section, we discuss the similarities and differences in the ,a s \hac and A,1_! upp(irt the critcria dc .eI pe'd
in Section 3. Our objective is to identify limitations intri,,fi to Ada. and ,p,!, oi areas "t A iHll exph)re durin2
Phase I1.

4.3.1 Modularity

Both Vbase and Ada support similar me hanisms for encapsulation and int ,rinltin hiding. \'base uses nhlodhlt.,
and Ada uses packages. They differ in their semantics I) F ihillt, of narre .,op's. and in their stpp()rt t. r

inheritance.

4.3.1.1 Inheritane Vbase's type latuce is not a strict tree structure. That isoh. tc,i, ma, hase more than one
parent type. Ada's subtype and derived type mechanisms are strktl,, hierarchial. ,although reord types ma' hte
each component deri'.ed from a separate parent type.

4.3.1.2 Visibilt"v Ada has weak support for inheritance, and the compile time stlari, nt pe-checking disciplinc limit,
run-time extension of the database. Ada alloks object creatior at run-time, throu,_h hC a/,/at. r mehan,,m hut
not L creation. Vba,,e allows such dynamic type definition, but the Ada compllcr and run-tme cannot *sec' hC

tvpe. Therefore. the type checking cannot be performed in Ada (although it A.ill be ,ecked bx, \'base at run time)
In general, the Ada types will have to follox Ada's semantics for compile-time chckin., and \ base types %kill hae
to follow object semantics.

Naming scopes are supported (as named interfaces), as are context clauNes i import, The semantic ul intcra,:ition
between objects in the Database and objects in an Ada program are polentiall_ sets dittiult. N ames in VB, a,,
provide bindings between strings (sequences of characters) and obiects. Names pr's ide a natural mechanism tor
referencing objects in a high level languaoe.

Both Ada and Vbase support block structured languages. Each new block detine, a nes scope tIor names. hs ich sse

call a name context. Every name reference is resolved within the current name cnr'st iIttn called a name sco)pe
in a programming language such as C, and also referred to as the Environment %thin \'Base). This method of
name resolution provides two important advantages:

1. It allows users to restrict the names visible at any given point in the code. Formally. \ke say a name is .isible
if it can be resolved to at least one object in the current name context. If the name can be resolved to more
than one object, we say it is ambiguous. This restriction of visible names signilicantl. reduces the chance ofa
name conflict, that is, two objects whose names are indistinguishable \s ithin the current name context.

2. It allows the introduction of local names which are not automatically visible outside the defining name
context. This again reduces the possibility of name conflicts arising.

A nested name context inherits all of the names of all of the name contexts A, hi,h (,ntain it. loweer, it a name is
defined inside the nested name context which is identical to a name in an enlOsing name conlrct, this is not
considered a name conflict. Rather, the name in the nested name context is assumLd to be the name desired. In
general, when name contexts are nested, names are resolvwd within the closest cnclosir name context. This is the
behavior of scopes in programming languages (such as the {..} scope in C. or bcgin end scope in Pascal or Ad.o.
Name contexts in Vbase are defined by types and modules. Modules are used sol.ly to create different name
contexts.

4.3.2 Flexibility

The semantics of Vbase and Ada differ in significant %%ays. A fundminiental diltccn, e in the two systems is Ada',
insistence on static checking, and on Vbase's suppOrT for run time diCiMM , ",,. hc,,xer. that \'base's type
checking is every bit as "strong" as Ada's.)
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4 2 P t ,,n% Vbase suppoirts parametrI, CX.eptn n,. IthMh' I .. I , , pi, r, d, n . ha ',.v ptran t , 111i

exCeption objects in the database retain their paraneters a, ,tate iril,rinaliir ithdt i,. d .i ae ho et\t,,, .,l

e,Lceptions are transient c-hanges to a program's flow of,o(,nut, ,iu"

While there is little impact of naming conflicts with (\base and Addo exceptiun handle">., Ac think there is lde
ado, antage to unity ing the two mechanisms into a single exceptin handling mechanism Wke wIll pr iside the usr,
with the opportunity to handle each exception type separate.

4 .:2 2 Polvm,,rphi, Fun'tnon.% '.'base supports "optional" parameters to subpigrMs, as \ Cll aS the 'det LuhI

value" mechanism Ada provides. UNIVERS will support the Ada approach, as well as Ada st, pr,., rarnil

o, erloading.

Because 'base allows run-time type and object definition, it supports run time thpe resolution. Essentiall,.
individual methods are dispatched at run-time based on the ripe of the first parainier supplied to them. The Adi
approach to static subprogram overhading resolution is a similar ci nept. Attempt, at u~im, Ada feitures fti run-
time resolution (for example, variant records, exhaustive enumeratlion) are .ums\ and inadequate tot a trul,

extensible database. Again, users who take advantage of tis fcature will have to relh on the more poiw erful hivt

Manager mechanism.

4.3.3 Efficiencv

In this section. we consider the approaches Ada and %'base take to pto iditng efti, ienc, in persistcnt stori,.e. \We
focus on two areas: expressing representation of objects in storage, and the process structure of the applicatin and
database.

4 3 3.1 Rcpre.cniaion Just as a type defines the behaviors of its instances, it must also i,,iltmi'nt th se bchav Irs.

Inplementation is done by translating the behaviors into a set of data structures and tranlormations on those damta
structures. Thus. a person might represent the length of time that he has wPorked at a certain job by scratching marks
into the w'all of his office: each day, a new mark is made. These marks are NOT the length if time that he ha,,
worked there, but they ARE an adequate r'pre.'ntatioin for this datum. To he mcarngtul, however, they must be
interpreted.

The task of a type is to deline behaviors, choose a representation for those behaviors, and mana,-e the task (it
translating between the abstract behavior and the representation for that behasior.

4.4 Summary

Table 4-I summarizes the features provided by Ada and Vbase supporting database eten<-;ilitv.

TABLE 4-1. Summary of Features

Criterion Ada Features.. . \'base Features .
SExpressiilitv Variables, types. subtypes Object versions of same (plus iterators)

packages, subprograms and exceptions as database entities

%luodularityi Separation of specification and body (Same)

I 11,l1 Cont 1 u.Se import clauses.
.. C).i,,Is•sl (with) . . . . . .Run-time ritheod ,pat,tht'r

main memory representation clauses SL.',Ondar, slorage p)ragnass ICompile-time optimization Stioni! tvpe. checking "

P'r-iistence package DIRECT l0 Aut- t atic slir, e nwent ,.-

In the next section, we consider how to integrate the two providing access to all ot \bise's features to a de,(I'n.

application developer working in Ada.
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5. Approach
In this section we investigate the integration of the Vbase object oriented database into an Ada environment. This
section outlines some potential approaches to providing an Ada-Vbase interface, and describes the goals of our
three-phase SBIR project. It summarizes our selected approach by describing how the features discussed in the la-st
section map onto our approach.

It should be possible to integrate external systems into an Ada programming environment, mapping the operations
and types of the external system into those of the Ada language. Because the concepts of database schemas and
programming languages are similar, we suppose that an external database system can be regarded by the user as an
abstract data type: a collection of data together with a set of operations defined on them. The resulting data type
delinition is called a database schema) The package facility of Ada can be used to realize such an abstract data
type. The data are described by data types which are described by means of a Data Definition Language (DDL).
The operatiom, are defined an a ).A:a Manipulation Language (DML). Our goal is to go beyond providing the usual
'embedded language" facilities () a DBMS for Ada.

The Data Definition Language should give the programmer direct support for:

" abstract data types, with separate specification and implementation ( package and package body in Ada).

" a subtype/supertype hierarchy A ith inheritance of properties and operations down the hierarchy.

" the ability of a type to export access to subsets of the properties and operations it defines through named
interfaces; built-in subtype interface which exports implementation information to subtypes which is otherwise
unavailable to types using this type.

Data Manipulation Language interface for the data base can be done as Ada packages, providing:

" the ability to create persistent objects whose lifetime is longer than that of the process that created them, without
having to implement all of the mechanics of copying them out of virtual memory onto tiles before process
termination.

" a more powerful exception handling mechanism

" associative retrieval (queries) built in as instance-identifying expressions.

Normally, the data model within an Ada program library and that of an arbitrary external system are different. The
data types and subprograms may not conform to Ada conventions. Therefore integration means the mapping of the
types and operations of the external system's to types and subprograms in Ada.

The result of such mapping is called an interface to the external system. The interface will be written in Ada. to
support its own extension according to Ada conventions.

The main task of the interface is to pass parameters from an application written in Ada to the database system. and
v ice versa. Therefore, syntactic (and often semantic) checks are needed. External systems may use a
communication area to support this interchange. One objective, then, is to hide this communication area, and leave
iLs management to the same interface mechanism that does the parameter checking. The call to an entry point of the
external system itself is done via an external reference.

We can identify the basic goals the interface should meet:

" Vrpression of new data structures and data storage layouts

• modular, increrental extension of properties and behavior, ideally as refinements of existing descriptions

12 A user is nornally not aware of the glohal schema, but only knows about (tha is, has acccs% to I 'crain pirls f the djtjbac - the
subscherin.
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* flexible access to database extensions (by existing applications andior utilities) v ithout recompilation

* improved response time for gaining access to new database structures

5.1 Vbase Description

As we have seen, Vbase models a broad range of entities as objects with state and dynamic attributes. It allows
these attributes to be abstracted by types; types can be abstracted further, by supertypes until the entire application is
expressed. But how is this abstract data model realized in terms of an actual software system?

5.1.1 System Elements

While the Vbase data model is powerful and perhaps unfamiliar to many software engineers, the implementationelements are all comfortably familiar. Vbase is implemented with two languages - a procedural language for

writing applications programs and a data definition language for defining the type hierarchy. Each of these elements
is described briefly below.

The Object Manager is structured as a set of interacting Ypg managers. This approach is in contrast to the more
,-, traditional structuring of a large software system into "layers" of functionality. The layering of a software system is

intended to enhance its modularity, and provide a distinction between semantics (the interface to a layer) and
implementation (the internals of a layer.) While we ensure modularity via the abstraction mechanisms of
classification and representation, it is nonetheless useful to look at the layering which is induced on the types in the
Object Manager system. This layering is induced by the interactions between the different type managers, and
while it is a loose layering (not strict), it does provide an insight into the overall structure and functioning of the
system.

The Object Manager, then, is loosely divided into 5 layers:

1. language layer

2. abstraction layer

3. evolution layer

4. representation layer

5. storage and access layer

This layering is presented in the same sort of ordering as one would normally impose on a traditional software
system. That is to say, the topmost layer is presented directly to the user; this layer generally issues calls to the
layer below it, and on down the line. Because the actual modularization of the object manager is based on type
managers, and not on layers, it is possible for a type manager in one layer to call a type manager in a layer which is
not directly below it, or even to call a type manager in a layer above it. The middle three layers implement the
features described in the preceding discussion of abstractions. The top layer, Language, interfaces with the user.
The bottom layer, Storage and Access, interfaces with the machine.

5.1.2 Language Layer

The language layer of the Object Manager provides the user with access to the facilities of the Object Manager data
model. Furthermore, it is the one and only door through which the user can enter. The crucial role of any language is
to provide a s for specifying the semantic operations defined in the base model. A given language may or may
not give direct access to all of the underlying features, and it may emphasize or simplify the interface to some
features at the expense of others.

5.1.2.1 TDL - Type Definition Language. TDL is the Vbase data description language. TDL statements describe
object types and the type hierarchy. TDL is a compiled language.

In most traditional languages, data types are compile time constructs only. Once the program is compiled and
variable storage is allocated, their role is ended. In Vbase, on the other hand, type definitions and the type hierarchy
are available both at compile time and at runtime. Object type definitions and the type hierarchy play a central role
in the system's dynamic behavior.
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5.1.2.2 COP - the Vbase Procedural Language: COP (C Object Processor) is a C superset language. It is a true
superset. The COP compiler can compile all legal C programs without changes. The most important COP
extensions are related to handling objects. These additions have been made organically by extending C constructs
to interface directly to Vbase.

COP recognizes calls to object operations as if they were native C function calls. Objecz types can be used directly
in data declarations. Objects in the database can be accessed directly, as if they were program variables without any
of the artifacts of file handles and pointers. (However all the standard file calls are still available for conventional
operating system files.)

5.1.3 Abstraction Layer

The abstraction layer implements the concepts of entity, type, property, and operation; and three of the
abstraction mechanisms: aggregation, classification, and generalization.

The abstraction manager is the top layer of the Vbase runtime system. It maintains the object type definitions.
Type definitions are global across Vbase database and applications programs, similar to a data dictionary in
relational systems. This single data description is used by all elements of the system.

Vbase is oriented towards the abstract data type paradigm, rather than the rnessage-sending paradigm of other
object systems.

In Vbase, object behavior is represented through a combination of properties and operations. Properties represent
static behavior; objects represent dynamic behavior. Property definition and access are syntactically differentiated
from those of operations. This provides a more natural model of object behavior. It also saves the programmer
from writing lots of trivial code to get and set the values of properties, as in message-passing systems - in Vbase,
these operations are generated by the system, increasing programmer productivity and program quality.

At compile time the type definitions and type hierarchy form a common procedure and type librar\. and are used
much like header files and standard library functions. At runtime the type detnitions and type hierarchy are used to
dynamically dispatch operations calls and property accesses. Finally, it is used by the underl. ing storage manager.
the Object Kernel, for actual data access.

Thus, the system exhibits the object-oriented flexibility of dynamic binding based on a hierarchy of types.
However, it provides performance comparable to a compiled, statically bound system.

5.1.4 Evolution Layer

This layer deals with the recording of history, and with concurrency control and recovery/restart. A single
mechanism underlies all three of these functions, which we call the version mechanism. This mechanism allows for
both linear evolution and non-linear evolution, as described below.

A linear history is one which evolves from a state A to at most one subsequent state B. We call each state of a
linearly evolving object a version of that object. Each version has all of the static behaviors of the object; only the
most recent version (the end version on the linear evolution path) can be mutated, however. Each version of the
object has a unique timestamp which identifies it. Any reference to an evolving object must specify what version to
use; this can be done by specifying the timestamp, or any other property of the version. If no specification is made.

then the latest version is chosen by default.

A non-linear history is one which evolves from state A to potentially more than one subsequent state. The multiple
successor states to any one starting state are called alternatives. Like versions, each alternative has all of the static
behaviors of the object, but only alternatives which have no successors (that is, alternatives which are the latest in
their sequence) can be mutated.

5.1.5 Representation Layer

The representation layer provides the ability to use instances of one type to represent the abstract behavior of
instances of another type. For example, the abstract behavior defined by type STACK might be implemented in
terms of an array. The fact that a stack has an array as its internal representation is not visible (nor is it important) to
any user of stacks. All that is visible from the outside is the abstract behavior defined by the stack type. In fact.
STACK could be re-implemented to use a linked-list representation, completely invisibly to any outside user of the
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type. Each type defines not only its abstract behavior (in terms of a behavior specification) but ako the
implementation of that behavior, in terms of transformations on an internal representation.

The representation layer also enables the use of references to provide an implementation-independent access to
objects. A reference to an object acts as a surrogate for the object. As far as a user is concerned, the reference IS
the object: it can be operated on by the operations defined by the object's types, etc. But the storage for the object's
representation might be located somewhere else, invisible to the user of the object, and not directly accessible. The
reference to the object provides the access path to the representation of the object, and this access path is only
traversable by the type managers which define the object's behavior. This spec/rep distinction, strengthened by the
use of abstract references, ensures that a type is safe from outside damage to its instances. Only the type controls
access to its instances' actual storage.

5.1.6 Storage and Access Layer
The object kernel is the storage manager. Vbase storage is highly cached for high performance. The object kernel

maintains the high-speed data cache and resolves high-level object names to actual storage locations.

Ultimately, the implementation of any behavior must rely on the manipulation of data by code. Both data and code
must occupy storage on some machine. The storage and access layer allocates that storage, and provides facilities
for managing it. Normally this layer is called by the representation layer, which is concerned with the
representation of behaviors. Facilities are provided, however, to allow other layers to interact directly with the
storage and access layer, primarily to allow streamlining of the storage subsystem for a particular task.

The database support facilities of Vbase provide automatic management of objects on secondary storage. Vbase
also provides:

" sharing of object data among multiple processes'users

t handling large amounts of object data - both number of objects and the total size of object storage space

" maintaining consistent state in spite of system or media failure

5.2 Possible Approaches

This section discusses three approaches towards providing an Ada interface to Vbase. They center around the
process architecture and degree of language integration between the programming, data manipulation, and data
definition languages.

We are concerned with three primary goals:

• To provide integrated support for persistent objects. The support should be as transparent as possible to users of
the system.

" To make the system as type-safe as possible.

" To provide Ada access to the complete Vbase development system - including the database, an interactive
object editor for traversal of type and object definitions, a verifier to check physical database consistency, and a
debugger for operations/method examination

We can realize these goals through a combination of techniques:
Expression Extend the Ada language to include \'base objects -- their description and manipulation

Type Safety All objects in the database will be typed. and we will enforce strong typing both at
compile- and at run-time.

Incremental Extension We will support incremental extensibility, using the inheritance and refinement
mechanisms characteristic of object-based systems. This Aill extend the Ada package
concept to include the Vbase module.

Availability We are going to provide application-level access to the database schema at both
compile- and run-time. Definitions of database types and objects will be immediately
available to the defining application (and to others thereafter). We will reflect changes in
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Vbase in the Ada Program Library.

Efficient Storage/Access We will provide the means to specify data representations, and separate this from the
specification of behavior.

5.2.1 Three Languages

The traditional approach is to use a separate language for data description, manipulation, and general-purpose
programming (see Figure 5-1).

Ada
library

tet compiler code Time

=ML transaction00

compiler D

DDL schema
compiler

Figure 5-1. Three Languages

5.2.1.1 Features Each language is processed by a separate language compiler, and has independent effects on the
database. Typically, the programmer or database administrator first defines new types (schema) and objects in the
database via the Data Definition Language. Transactions can be defined via the Data Manipulation Language.
Programs written in the programming language may refer to the existing transactions, or invoke database access
routines directly.

5.2.1.2 Advantages This approach is the typical, well-proved "embedded language" approach followed by most
commercial DBMSs. It's relatively easy to implement, because each language processor is independent and
supposedly less complex than the combined system.

5.2.1.3 Disadvantages Using three independent languages is a potential source of errors, as definitions and changes
introduced through one mechanism may not agree with the use of those definitions via another.

The key to this approach is to add routines in the program library which allow access to the database. This is often a
fixed collection of routines.

It does not support static type checking. Even run-time database references are essentially un-type-checked, unless
the database itself contains certain semantic checks.

5.2.2 Two Languages

The first step towards overcoming these difficulties is to integrate some of the database with the programming
language. A reasonable first choice is to combine the database operations with the set of subprograms available to
an application at run-time. This approach effectively eliminates the need for a separate DML (see Figure 5-2).
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Ada

library

Aa Ada obec Run

text {compiler code Time

DDL compiler D

Figure 5-2. Two Languages

5.2.2.1 Features The operators of the DML are mapped to special subprograms like the predefined operators in
Ada. The new constructs must conform to the syntax of the programming language, whereas their semantics are
those of the corresponding DBMS constructs. The Ada types and subprograms that result represent a database
system interface which can take the form of an Ada package.

5.2.2.2 Advantages By eliminating the DML and its associated transaction compiler, we simplify the total system
users must deal with. There is one less language to learn, one less program to run, one less set of options to enable.
and so on.

Combining database and Ada operations allows optimizations of those operations through essentially the same
mechanisms the compiler already uses.

5.2.2.3 Disadvantages The unified system may be more complex than either component considered separately. For
example, query optimizations would be an additional concern for the compiler's code generation phase.

This approach still does not eliminate the DDL - which defines much of the information needed to carry out these
optimizations. An additional complexity would be the access by the compiler to the database for this information.

Attempting to provide type checking in the application leads to redeclaring (that is, duplicating) many existing
schemas to provide access from Ada. This leads to the usual sorts of maintenance difficulties with duplicate copies
of information.

5.2.3 One Language

Since Ada has a rich collection of type definition and manipulation facilities, it seems reasonable to exploit these in
an Ada interface to the Object Manager. This "Single Pre-processor" approach would aim to add persistent storage
to existing Ada semantics (see Figure 5-3).

This approach would extend the Ada language by integrating the DDL and DML constructs for type declarations
and corresponding operators. The DDL constructs are mapped to type declaration constructs, which may introduce
type constructors that were not foreseen in the language.

5.2.3.1 Features Another way of looking at this approach is to consider a predefined schema and the operators
defined on it as an abstract data type. Abstract data types can be easily realized by Ada package. Then the
mapping consists of two parts:

I. A mapping that derives the package type declarations from the database schema, and

2. A mapping that associates each DML operator with an operation of the package.
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AAda

Ad+ Ada+ Ada obec Runtext pre-proc "g omier cd Time

Figure 5-3. One Language

Using the new constructs, the Ada users may declare a database schema in much the same way as they declare
record or array types. In doing so, there must be a reverse mapping which provides a DBMS schema definition (in
DDL) and database operators (in DML). The mapping must be expressive enough to provide the equivalent of
defining this schema directly in the DDL,

If the schema on the DBMS level and the types on the Ada level have a similar structure, one may even mechanize
the mapping: taking a schema as input and producing a set of types in Ada as output. The mapping of operators is a
much more complex issue. It involves two steps:

1. Define a mapping that converts the database objects to Ada objects (which may be at least partially derived
from the data type mapping).

2. Define a mapping that associates a program with each package operator that calls one or more DML
operators.

5.2.3.2 Advantages This approach is the best way to integrate the two systems and get complete type checking.
The preprocessor picks out Data Definition and Data Manipulation Language statements embedded cleanly in the
programming language, and turns these into standard Ada language statements (plus subprogram calls for run-time
access). With this integration, we can exploit:

- Strong typing, and compile-time optimization

- Type-specific representations

* Exploiting semantics for performance

It should result in a smaller, more efficient implementation, if Ada semantics overlap with object-oriented
semantics. This solution has a benefit from the database point of view: having the schema available on the
programming language level will allow type-checking at compile-time.

It also provides a sepz-ation of concerns: each subschema to the database must be described separately. Each view
is represented by a specific package which restricts the general interface. Each package represents a view for a
certain group of users, who may be the only ones authorized to access the package. All such packages form a
database view library in the Ada program library. This approach has the added benefit that the structure of the
database can be hidden from the users, and that their views are entirely determined by the logical aspects of their
applications.

5.2.3.3 Disadvantages The chief disadvantage of this approach (%hich cannot be avoided in any compile-time
solution) is that the Ada programmer cannot create views dynamicall) at run-time.
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With Vbase as the DBMS, there is an additional concern: some common Data Model descriptions may be
exceedingly difficult (or even impossible) from Ada. We do not yet know the difficulty of integration (or pre-
processing out) for items such as inheritance or iterators.
5.3 Selected Approach
We chose the "Single Pre-processor" approach, adding persistent storage to existing Ada semantics (see Figure 5-3).

It should result in a smaller, more efficient implementation, wherever Ada semantics overlap %kith Object Manager
semantics. We ruled out modifications to the Ada compiler allowing it to recognize the extended language directly.
This approach carries too great a burden for complying with (indeed, certifying) the ANSI standard semantics of
Ada. We also did not choose to merge the Ada program library with Vbase. Although this is the approach taken in
one version of the existing Vbase product line, 13 we felt it was too ambitious for Phase II.
No modifications to the Vbase product are required to build the prototype, in which C library functions can he

invoked from Ada applications. Thus the Ada interface development can be done independently of the development
of the Vbase product. The staff working on this Program will require access to the source code of that interface
library only in order to maximize the efficiency of the marriage between the C interface and the Ada interface, and
all of the work of optimizing the interaction will be done on the Ada side of the interface, and will be performed
under this Program. The Ada interface developed under this Program v ill be the prototype for an independent
layered product compatible with the standard Ontologic \'base product. That prototype layered product will be
delivered to the government as the final deliverable under this Program.
The UNIVERS product will contain a pre-processor and a package-level interface to Vbase in the Ada program
library. We will add routines in the program library which allow access to the database. The major benefits of this

approach are:

. Integration of the Data Definition, Data Manipulation. and general-purpose Protramming languages

9 Improved optimization through static type checking

* Ease of extensibility through standard Vbase mechanisms

* Persistence of the symbol table information: types and icgalit\ of ,ubpreram pirametcr proiles

* Access to run-time extensions through Vbase

5.3.1 Pre-Processor

The most complex aspect of UNIVERS is the pre-processor. The purpose of the pre-processor is to recognize the
object database extensions added to Ada, and transform the input text into ANSI Ada (%%ith access routines). A

side-effect of this transformation process is automatic generation of Ada code. primaril\ to deline ne\X ah',tract data
type packages. The pre-processor includes:

* Access to Vbase for entity descriptions

e Adding type descriptions to the database

e Generating Ada packages to mirror these changes in the Ada program librarp

e Transforming the input text to ANSI form

The main goal of the pre-processor is to reflect changes in the state of the Vhase dlraoe uthat is. nekk t\ pe and

object definitions) into the Ada program library. This makes the extensions a,ailable to the applications s, ritten in
Ada. Section 6 describes the pre-processor's functions in more detail.

13 DBDCOP, the Data Base Dependent C Object Processor. We think this is 'he next It.. ,I ,p I. r ih, U RsIVI N, prdudt, esC n
though it would require modifications to the host Ada compiler.
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1%

5.3.2 Procedural Access to the Database

The main goal of the interface package(s) is to expose Vbase semantics to the design application programmer

working in Ada, especially the run-time facilities. The interface package includes:

" Access to the run-time routines of Vbase

0 A base context for the automatically-generated Ada packages

Section 7 describes more of the features of this interface.
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6. Pre-Processor

This section describes one of the two main components oft Our approach: the pie-processor. Appendix A presentsi
the grammar of the interface language we've defined. This section higligh-fts some of the features and their supl)on
for the extensible database criteria outlined in Section 2.

While Ada has many features which a skilled designer mnight use fot ohiect-oriented proprannunthBk-X 3 it hiicks
certain features for supporting the dynamic extensibility provided by the Ob 'ject Manacer. We have taken the

opprtuityto define certain extensions toAda which facilitate tile intepration (ntepepoesr f d n
Object database featuies. For thle most part, these are ANSI Ada constructs, with the keyword object added.

TABLE 6-1. Language Features Summiary

[-criterion I ancrracwe Feam ures -

Expressibility object, type, variable. constant, properties, operations
Modularity package, proocedure. function, iterator

Flexibility method, exception, inheriiancie~- ------

Efficiency representation, (lu.stcr-( bit s
Persistence Vbase

6.1 Declarations
The declarations allow users, ito describe objects, their typeN, and their relationships. The\ also prmide was% to)
detine (and limit) the operations alloskcd for objects. and the struciture. rep-resen titiloll of thie objects.

Ihle pre-processor should take advantage a strict notion of the mecanine- of- subtype as well as, modern incremen'ltal1
comipilation technolog, to eliminate most of this run-Lime indireLction. Thie application builder should be alkm. cd to
treeze" T)rtions of' the ty'\pe hierarch ' once application develo)pment has settled down. and compile codeL l~ti de

type moanagers which is close to the eliciencv Of typical1 propratomint- larncuaics.

'File prc-processor implements t(l ttfect of declarattions by, tidits ino the, content,, ofI thle database. It use>, stanirrd
\'ba.,, acce,;s to define new entities, including types, ope~rations. miethods, and eiiceptions. The pre-proCessor.ils
penerates the Ada packages, required to reflect thle changed databhase namne space in the Ada procrain Iibr~ir.

6.2 Names and Expressions
We have kept the semantically distinct name spaces of Adai and Vbitse separate by distinguiish ing them) syntaictiaJlly.
T[le $ lexical element is not used in Ada, and indicates at diatabase obj cLt Miltne. Th $symbol has,, two ue:to
anchor a database path name at tile root name space in tire database: and I(r tile "ties t' method in a sequence (see t be
discussion of'Statements).

'Flie names in the Ada packages generated by the pre-processor wsill contain fully qualified namies. Thlese namecs
stiart with the package D)ATABRASE, which must be imported into the context of the application (v'ia a withl claUse).

We have not settled the issues regarrding an integration of expression elements, in the two name spaces. For nrrsk we
will provide little inmplicit conversions between the Ada and Vbase types, lTre pre-processor will rehN on tile nrinial
Ada overloading and subtype semantics to resolve amibigit ties.

6.3 Statements%

The ma.jor operations available to an applicatiomn will be defined as, srrbproclains tin the databatse interfacepTk~
(,,cc Section 7). Additional statements recogniz~ed by thie pre processo r include itertfors arnd eccpt ioii handlers,.%

1 t1 t'has HI tt itic pmicct witli nvecsigtc ilts in dO.-ti.
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The "statement" $$ indicates the "next" method in sequence, which may be one of:

" A "trigger" in a sequence of triggers.

" A "base method" of the referenced operation.

" A method or trigger on the "supertype" operation.

" A method or trigger on an operation for which the referenced operation is a refinement.

All of these statements are transformed by the pre-processor into ANSI Ada, and ultimately realized by the
subprograms in the database interface package.

6.4 Implementation

This grammar is not yet complete, to the point where we might implement a working pre-processor. HowAever, it

does show the principal constructs of the language. The pre-processor which parses the eventual language will be
able to define objects, types, and arbitrary entities into the database. Procedures, functions, iterators. and exceptions
can be objects in the database, or elements of the Ada compilation library. Their presence in the database directly
supports the notion of extensibility we are implementing.

We checked the grammar defined by building a recognizer for the language. We defined a language for the
specification (using a modified Backus-Naur Form), and built enough of a recognizer to check the statements for
syntactic correctness. This recognizer not only validated the consistency of the grammar, but also gave us some.
'imple syntax checks of the interface itself. We used two langtiage development tools available on UNIX systems,
It.X'I

s '
5 and vacc.Joh

7 5

6.4.1 Parsing

'acc provides a general tool for irnpoinL stru lure on the input to a Lomputcr program. The .acc user specifies the
struc.tures of his input, together w ith code to be insoked as eac-h such structure is re.Cognizvd. :acc turns such a

specification into a subroutine that haindles the input process.

The class of specifications accepted is a very general one: LALR 1) grammars with disambiguating rules. The
theory underlying vacc has been described elsew here.Ah,74 Ah,'5. A While iacc cannot handle all possible
specifications, its power compares favorably with similar systems: moreover, the constructions which are difficult
for vacc to handle are also frequently difficult for human beines to handle. Some users have reported that the
discipline of formulating valid yacc specifications for their input revealed errors of conception or design early' in the
program development.

6.4.2 Lexical Analysis

lex is a program generator designed for lexical processing of character input streams. It accepts a high-level,
problem oriented specification for character string matching, and produces a program in a general purpose language
which recognizes regular expressions. The regular expressions are specified by the user in the source specilications

given to lex. The lex written code recognizes these expressions in an input stream and partitions the input stream
into strings matching the expressions. At the boundaries between strings program sections pros ided by the user ate
executed. The lex source file associates the regular expressions and the program f igments. As each expression
appears in the input to the program written by lex, the corresponding fragment is executed.

Source-- lex -* .l,x

Input -4 - Output

Figure 6-1. An overview of lex

lex turns the user's expressions and actions ( source ) into the host general-purpose language (see Figure 6-1 the
generated program is named vvlx. The vlex program will recognize expressions in a stream (called input 1 and
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lexical grammar
rules rules

Lex yacc

Input --+ yylex -- yyparse - Parsed input

Figure 6-2. lex with yacc

perform the specified actions for each expression as it is detected.

lex programs recognize only regular expressions; yacc writes parsers that accept a large class of context frce
grammars, but require a lower level analyzer to recognize input tokens. Thus, a combination of lex and .ace is
often appropriate. When used as a preprocessor for a later parser generator, lex is used to partition the input stream.
and the parser generator assigns structure to the resulting pieces. The flow of control in such a case (which might hc
the first half of a compiler, for example) is shown in Figure 6-2. Additional programs, written by other generators
or by hand, can be added easily to programs written by lex.

lex generates a deterministic finite automaton from the regular expressions in the source. A
N

h
,

7 5b The automaton is
interpreted, rather than compiled, in order to save space. The result is still a fast analyzer. In particular, the tinie
taken by a lex program to recognize and partition an input stream is proportional to the length of the input. Thc
number of lex rules or the complexity of the rules is not important in determining speed, unless rules which inchude
forward context require a significant amount of rescanning. What does increase with the number and complexit. of
rules is the size of the finite automaton, and therefore the size of the program generated by lex.

6.4.3 Recognizer

Main

Figure 6-3. Recognizer Software Hierarchy

Figure 6-3 illustrates the software hierarchy. The resulting recognizer is a grammar/syntax analysis tool for the
UNIVERS language, and was produced from a public-domain yacc specification developed for the ANSI Adai
standard. The softwart; is included as Appendix E.

This tool will do little than check the syntax of a UNIVERS program. We used it to check the data model deschliki
in Section 8.
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7. Interface

This section describes the other main piece of our system, the interface between Ada and the Vbase Object Oriented
Data Base. It explains in more detail the interaction between the pre-processor, the Ada program library, the run-
time library linked with the application, and Vbase.

The Ada program library interface has to perform three functions:

" Provide access to existing Vbase Abstraction Manager and Representation layer function calls.

" Implement the Ada packages automatically generated by the pre-processor.

. Generate the application code to run on top of the first two items.

We Aill provide these facilities as Ada packages, in the same way the basic run-time environment is described in
package SYSTEM. The basic Vbase services will be described in package DATABASE'.. Packages generaied by
the pre-processor will include this package in their context.

7.1 Library of Facilities

kaee DATABASE provides the definition of types, objects, and operations necessary to use \'base in its most
:mntary form. It constitutes the run-time library for an application. Theoreticall%, careful Ada programmers

Sld use this package directly - without invoking the pre-processor. However. this prat ie denies them most of
:,c power of Vbase's abstraction and extensihility mechanisms.

package DATABASE is
declarations of types and subtypes
declarations of objects
declarations of sub programs
declarations of exceptions

private
representations of anv priate types

pragmasfor any external subprogram.v
end DATABASE;

7.2 Run-Time System

A teature which can reduce storage requirements and improve performance for .' 'to., in kl. ins small objects is
the support for type-specific value inheritance down the a-part-of hierarchy. If ,,alues for properties can be
inherited by an object at a lower level in the hierarchy, then they need not be physically stored as part of the
representation of each and every lower level object instance. A performance-related side effect of this notion of
pro rty value inheritance down an a-part-of hierarchy is that it is straightforward to reline the vet jropcrtv_ value
Jrnl %t_property value operations on the types in the a-part-of hierarchy to cache current property values in a
-tae machine' from which they can be very rapidly retrieved without even going to the rl,.'lrlving database.

he UNIVERS product should provide the type safety and efticient performance of \hbae s honeer possible:

" I % pC specific representations.

" Exploiting semantics for performance: clustering, and anticipatory' pre-fetch.

Vha.se does not force all objects to be implemented on top of a single low-level primirse leg., record or tuple).
Initcad, it is be possible to define a custom implementation for each distinct type.

%lany of the early object systems faulted individual objects into memory. That Aoiks, well for large objects, but
hrc,,ks down for small objects. When objects are small (as in polygons for a \LSI mask). many hundreds or
th,and.s of them may be transferred in as a unit. The Vbase system contains sir.it,,c pta.,ma. which allow
,pplication builders sophisticated control over how it clusters objects into segments.

\,xt traditional systems have the database running in one procs and the applic;iion- in separate processes. The
itpplication must send an Inter Process Communication call to the Data Base Nian;cernnt S\,,rem to request data.

)nti ogic, Inc. 7-1 pril 2', 1987
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which can take from 7-15 milliseconds: nearly half of the time required by a disk access. At 10 milliseconds per

call, even if the Data Base Management System itself was infinitely fast and took no time to process the case, that
would be a maximum of 100 calls per second.

Most engineering applications operate with their design data mapped directly into their address space. Vbase maps
its own code as well as large segments of Object Memory directly into the address space of the process using it.
This means that the call overhead is analogous to that of a subroutine call rather than an Inter Process
Communication message - 50 microseconds rather than 10 milliseconds. The theoretical maximum number goes
up from 100 to 20,000 calls per second.

All of these facilities of Vbase should be expressible in the language recognized by the pre-processor. Howxever, in
early implementations of the UNIVERS product, these facilities will not be available at the language level. Instead.
the programmer will have to use direct access to Vbase facilities. This access will be provided to the Ada
applications via use of pragma EXTERNAL - thereby exploiting both the ususal flexibility of Ada to cope with
foreign code, and the investment in the working Vbase system.

-.
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8. Examples
This section provides examples of Object Oriented Data Base extensibility. It uses the grammar we've defined to
express elements of the Data Model which should be accessible through the interface Ase've described. Finally. it
demonstrates the dtabase extensibility available using Vbase - by using the Data Model to extend itself.

8.1 Data Model

A data model is the set of abstractions underlying a particular programming style or programming environment. For
example, the data model of the popular languages like Pascal or C includes constructs like the type definition, the
binding of variables to type definitions, the languages' block structure, functions and procedures as objects with
their own private state and procedure information, etc. Similarly. records, keys and tiles are the abstractions at the
root of relational databases.

Data model abstractions form a bridge between the problem and iL solution. Thus they must be ,
implementation constructs and model the application well at the same time. A model invariably requires extra sork

to implement if it lacks power to express either reasonable implementation constructs or relationships inherent in the

problem. For instance, consider the file/record/field data storage model that evolved from the Hollerith punhed
c:ard. It is an easy model to implement, but it is not very expressive of the relationships intrinsic in the data.

Therefore systems that use this model or its newer derivatives must express data relationships outside the model, in
the applications programs. This invariably results in duplicate code for expressing similar relationships in different

contexts and leads in turn to more work, more opportunity for errors and more effort for maintenance and

enhancements.

We will use the language defined in the Secion 6 to describe the interface precisel., by enumerating database
objects and defining them in terms of the supplied formal language. These objects are the "kernel'* of the database.

Everything in the database is described in terms of these objects. The interacting mechanisms of inh'rt n c and

refinepwnt, together with these definitions, provide extensibility in the database.

8.1.1 Types

The contents of the Vbase database are defined by its types and their properties and operations. Every ohiect in

\'base is ultimately a type of Entity, which means that every object has at least the behavior of an Entity. Create,

Delete. Get Value, and Set Value are operations that can be performed on all objects.

Entities in Vbase are commonly decomposed into types and instances of types. Instances of type Type also dceine
the behavior of their instances, so that they are types as well as instances.

Eniay

I

Figure 8-1. Summar 'I pe ltierarchy

Figure 8-1 shows the most integral t, pes of the Vbase data model, and their Ft.l ionS tU tl h CA h. \'1 0 'htL'l ii iA I
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11.;w types, they are actually extending the Vbase data model, while at the same time keeping the full support of the
database. The types of the Vbase data model themrselves, however, cannot be modified by the user, since they
define the fundamental behavior of the Vbase system.

The type Type defines the behavior of its instances. Even Entity and Type have type definitions, which makes
every part of Vbase extensible, and makes upward compatibility easier to provide. The type Type in Vbase
corresponds to class in Smalltalk-80, and to relation in relational databases. A type defines the properties and
operations, inherited properties and operations, and implementations of an object.

The following subsections describe the Data Model. The actual listings for them are included as Appendix F,
expressed in the extended Ada language recognized by the UNIVERS pre-processor.

8.1.2 Entity

All entities, including type Entity itself, are direct instances of some type. This behavior is specified by type Entity
itself (see the directType instance property). The direct type of type Entity is called MasterType. The behavior of
master types is described in the section on MasterType.

All things in the database are entities, and all enities acquire their behavior from the types of Ahich they are
instances. These statements apply equally well to types themselves. In order to asoid self-definitions, or infinite
numbers of types, the behavior for type Entity is acquired by its being a subtype of itself. This information is of no
particular value to the application writer, but is visible. If you ask for the supertype of type Entity, you'll get back a
set containing type Entity.

While all objects in the database are ultimately instances of type Entity. there are NO objects Awhich are Entity's and
nothing else (such an object would be rather amorphous). The fact that type Entity's instantiahle property is FALSE
means that it is NOT possible to create a raw Entity.

Every entity is a direct instance of some type. This type may be accessed via the entity's directType propert.: or \ [a
the typeOf operation described below. Either method of access produces the same result, and one i, in fact deiin.d
in terms of the other. It is a matter of programming convenience and taste as to ,,hich should be used.

It is always possible to determine whether two entities are identically the same. This operation returns TRUE it il,
arguments are in fact the same Entity, and FALSE otherwise. The definition of identi, allv the .%apu- is very strict.
Exact structural equivalence, for example, does NOT imply equal identity. Neither is the floating point number 3.0
identically equal to the integer number 3 (they are numerically equal. but behaviorally differenn. The mea;'ing of
equal, is that the two entities have exactly the same behavior, and that if either is ever modified in any way, then
that modification is visible in the other.

The Entity$delete operation attempts to negate the existence of its argument. If successful, the entity deleted will
become inaccessible, in the sense that no further operations or property accesses may be performed on the entity.
The delete operation may be unsuccessful for a variety of reasons, of ',hich three are common. The tirst is that the
entity is a universal (it is not possible to delete the number 3 for example) Ahich results in a
CannotDeleteUniversal exception. The second is that the entity is the value of a required property of another
entity, such that deleting the entity would violate the integrity of the other. This results in a
DeletionConstraintViolation exception. The final typical exception occurs sshen lo\-_Ievel resources required to
effect the delete are temporarily unavailable: for example, if the media on \.hi. h the entitN resides is "down". All of
the,,e exceptions are subtypes of the CannotDelete exception.

There are several important things to know about deleting an entity. The first is that references to an entity may
exist even after the entity is deleted. If, for example. Pipe A has a property wkhich connects it to Pipe B and Pipe B
is subsequently deleted, pipe A will continue to refer to pipe B unless explicit action is taken. This is called the
"dangling reference" problem. It is the responsibility of the deletor to ensure that properties refering to the deleted
entity are also deleted. This is normally done b) retining the Entity$delete operation.

A second thing to know about Entity$delele is that it is utllow. Deleting an entity \kill NOT automatically delete
all of its constituent parts. This can be effected, if desired, by refining the Enlity$delete operation.

It is alwa,,s meaningful to ask \, hether a given entity is an instance of a pien type. Fntity$hasType .\ ill return
TRUE if the relation exist,,. and FALSE otherwise, If an entity has a gi en iyp., then it is ruarantecd to eshibit all
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the behavior defined b\ that type and each of that type's supert,-pes In other A~ords. the entity \,kill have all
properties (although not necessarily property values), defined by thle type, and all ope-rations defined b\ the ty pe can
be meaningfully applied tc) the entity.

Because the language supports strict type checking, it is never necessary to ask \Ahether an a variable has its
declared type, or any of its declared type's supertypes - the answver is always TRUE. Trhe t\Ao times it makes good
sense to ask hasType (e. It), are \Ahen either the declared type of e was a union of- several types, or A hen t is a ,

subtype of the declared t\ pe of e.

Every entity is an instance, of one or more types, and acquires all of its behavior from its types.' The Entity$typeOf
operation always return' the one direct ty"pe of an entity. An applic:ation might use the operation for the same
reasons as using hasType.

The Entity$getTypes it:rator successively yields all of die types, of - hic:h an entitN is an instance. This
information can be used tdetermine the complete behavior of the entir'

8.1.3 Type

Type TYPE is an instance of itself'. In other wvords, it is a type: just like type PERSON or type PIPE are tyvpes. Tile
purpose of types is to d-.ine behavior for their instances. Type PER SON might define a PersonSmarry operation.
and ty-pe PIPE might define a PipeSdiameter properly. *V-vpe TYPE defines behavior for its instances too. This
behavior is the abilit6 c define behavior. Type TYPE defines the ability for ITS instances (tpest to define
operations and propert'ie, for THEIR instances. It is because type PERSON is an instance of' type TYPE, that type
PERSON can define the marry operation. In like fashion, it is be auIse type TYPE is an instance oi tcf that type -

TYPE can define the aivto detine.

Type TYPE is a subtyp if't\pL Enfity, trom which it inherits behav ior. 1The behavior \A hic:h Entity deiines ac lite
create, delete, equal ope.stions. and the typeOf property. The tac:t that type TYPE is a suhtype of' type Enfity
means that it is possible tcreate new types, delete old types, test two t\ypes for equality, and for ty pes to themrselves
have a tylpe. Furthermor--. ve drint have to repe-at these capabilities in thle detinition oif TYPE: the', are inlherited
fromt Entity. The abilt\ -,)r t\ pe TYPE to be an instanc:e of iLself- (or all\ thin,- at all for that matter) is den c,! fromi
thle fact that it is a subir\'e of ti pe E ntity. It is interestingo to note that type TYPE d&fines thle TypeSsupetliypes
property. The reason Ill-: it ha , a suipcrtvpe itself-is that, as stated abuse, tpe TYPE is an imstance of itslf.

A.ny entity ma% be named,-J but ry pes ntay additionallN', knoA" their name. The distinction betwAeen an entits hainell
a namne (being named) and knoss ing its name is subtle and not of great concern to the application wniter. The s aluje
(of thle name property is n,)t a string of characters, but rather a symlbol. A svnibol contains at string of characters, and
a reference to the entity named by that string. Thus the Type$name property functions somewhat like an inverse
property.

Every type must be a subtype of some other types. from \Abich it inherits behas ior. The va'tile Of thle
Type$supertypes prope-tN is a set of t ype s rather than a single ty pe. If' one of' thle supertvpes of' ty-pe A is I\ pe .
then ty pe A is auiomlatic.aily one of, thle subtypes of type B. This is to say thle tile s upertypes and subty pes properuc ti-
are inverses of each other.

[or the moist part, it x" b: e rare for the application programmner to be concerned \.%ih Type~supetlypes x16
Type$subtypes as prope-rties of- type TYPE. The main motivation for dealing ss ith them (again, as propertiesi is
for dynamic (ie runtimeIC \ pe creation. When defining a type. hoss\ever. the application wvriter WILL be con'ernedc
\ssith the ,upert~pes of tme type being detined. for it is via the supertypes that behavior is inherited. The user \,\ I I
probably neser explicitl\ decl:are a type's subtypes as these are derived by the system.

I In the irrent release, an c1'is rvsirclcd to t-inp a direct intince ,I onk a 1\ pet i , aiihommh iti als 4 i5 n iniliric infl.Of' c
ofalto 0% i dinrel fv!'% S 4 ( IC (n piaincr Inighsh, a fhrsn t.ann~ ciirrc!n11 hc an' in'.sn~c ot' h,,ih ts pc STUDENT. anr% o

PHOFPESSOR
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The operations which a type defines for its instance, are recorded in the type's Type$defops property. The ,alue
of this property is the set of all such operations defined. Each such operation is related back to the type v hi-h
defined it by an inverse property Operation$basetype.

The existence of the Type$defops property is normally of litde concern to the application-writertype-programmer,
because the language supplies a clearer syntax for defining instance operations - the operations construct. The
main use of the defops property, then, is for dynamic type creation and modification. The properties which a type
defines for its instances are recorded in the type's TypeSdefprops property. The value of this property is the set of
all such properties defined. Each such property is related back to the type which defined it by an inverse property

Property$basetype. The existence of the Type$defprops property is normally of little concern to the
application-writer/type-programmer, because the language supplies a clearer syntax for defining instance properties
-- the properties construct. The main use of the defprops property, then, is for dynamic type creation and
modification.

Each type has control over whether or not it is possible or meaningful to have direct instances of that type ie
instances of the type which are NOT also instances of some more specific subtype}. If a type IS directly
instantiable, then it MUST supply concrete implementations for each of the operations it defines. If a type is NOT
directly instantiable, it may supply all or none of the methods for the operations it defines (counting on subtypes to
supply missing methods). By default (ie if the programmer says nothing to the contrary), new types ARE directly
instantiable. The Type$instantiable property is initialized at type creation time. Its value may be subsequently
retrieved (although an application would not have much reason for doing so), but may not be modified. Needless to
say. if a type is uninstantiable, the compiler will ensure that it is not possible to create a direct instance of it.
Nevertheless, the type programmer may still wish to provide a create method or create triggers w~hi,.h will get
invoked when an instance of a subtype of the non-instantiable type is created.

All types have an associated class of their instances. In other words, it is always possible to iterate over the
instances of a given type. Because some classes are very large or infinite (and the iteration may not end in
reasonable time), we differentiate between explicit and implicit classes. An ex.plicit class caches iLs, instances so as
to be able to return them quickly. An implicit class aggregates its instances by a predicate which selects them trom
among all entities. By default, a type's class is implicit.

8.1.4 Property

Type PROPERTY is a subtype of type TYPE. This means that instances of PROPERTY will al,,o he instances of
TYPE - that is, they will be types %,hich can have instances of their own. When type PERSON defines the
Person$address property', this means that an individual person (say, Craig) can have an individual address
property. Craig's address property would be an instance of the Person$address property. The rationale behind
this is twofold. First, it allows individual properties to be denotable entities which can be used as any other entity,
ie. passed as operation arguments, assigned as the values of other properties, etc. Second, it allows a PROPERTY
to define new behavior for its instances. This means that individual properties can themselves have properties, and
that they can have property-specific operations defined on them. Information which might be specific to
PersonSaddress is whether the address is a mailing or home address, how long the person has "been at" that address.
vhether the person owns or rents that address, etc.

Every' PROPERTY is associated Aith the TYPE %,hich defined it. This information is stored in the PROPERTY's
basetype property. It is the inverse of the type$defprops property. The system uses the PROPERTY$basetype
property in the implementation of property manipulation. It is of interest to the application writer only for ds namic
(run-time) type creation or modification.

A property relates a subject to a value. For reasons of type saf_'ty. it is necessary to make some statement about the
class of permissible property values. The PROPERTY$vspec propeny records this statement in the form of a
valuespec. Most valuespecs are simply a type. The Person$mother property might have a vspec of FEMA.E -
which means that the value of any mother property must be a FEMAL.E. Sometimes, it is useful to allow a union of
types as a vspec, or even a parameterization.

The value of a PROPERTY is manipulated by i,ct and wt operations, which repctely retrie\e and update the
property's value. By default, the system automatically ienerates the,,e operatio ins, so that it is sufficient for the typeI

programmer to define properties wAithOlt having to write any code. In some caes,, ho,,es er. the type progran)mCr
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may wish to override these defaults with her/his own methods. This is typically the case if property values are
derived, or if a special representation is used, or if certain constraint-checking or side-effects must occur upon
access. For this reason, every property has get and set properties whose value is an operation type. The particular
operations used must be specified at the time of the PROPERTY's creation, and can never be subsequently
changed.

PROPERTYs are either optional or required. If required, any instance of the property's basetype must always have
such a property. This means (among other things) that any attempt to create an instance of some type must supply,
as arguments, values foiall ,.)f its required properties. The system uses optionalProp to validate (among other
things) creation attempts. T',e application writer typically specifies the value of this property implicitly via the
optional clause. The main rea,on to know about optionalProp explicitly is for dynamic type creation.

It is possible to s'ecify a default value for optional properties (the information, if supplied, is ignored for required
properties). - nis .iefault value must, of course, meet the vspec (i.e., must be a legitimate value). It is currently used
(only at instance creation time to supply an initial value. If an explicit property value is supplied at creation time, the
default value is not used. Typically, the application writer specifies a default value implicitly via the := construct.
The main reason to know about it explicitly is for dynamic type creation.

PROPERTIES can have inverses, examples being parent-child, employer-employee, etc. The system guarantees
that a change to one part of an inverse will automatically cause a consistent change to the other part. If a person
changes her/his employer, then the system ensures that a) the new employer refers back to the person as jt.
employee, and b) the old employer no longer refers to the person as its employee. It is important to note that
required inverse properties cannot be changed. It is therefore advisable to specify inverse properties as being
(,ptiop:il.

When a PROPERTY can be multi-valued, the meaning of an inverse may apply either to the aggregate of values or
to each individual value. The latter case is indicated by setting the PROPERTY$distributedProp to TRUE.

T-he three options above relate to the ability to embellish previously defined properties. A PROPERTY may either
allow or prohibit subsequent refinements. The choice generally represents a trade-off between ease of modification
irefinabIeL and speed of execution (unrefinable). In general, it is advisable to allow properties to be refined during
development, and to "freeze' the schema (for performance improvement) when in "production".

Given that a PROPERTY is refinable, it is still possible to limit the ways in which it can be refined. A FALSE
%alue for the constrainableProp indicates that a property cannot be refined by constraining its valuespec
(restriction on legal values) to be a sub-valuespec of the originally defined valuespec. Allowing constrained
valuespecs in property refinements is both a powerful and a dangerous capability. It is dangerous in that code
which , orks for a given type might stop working when a subtype (which constrains the valuespec) is added to the
sch-!nia.

A property which is a refinement of another property refers to the latter via the PROPERTY$refinesProp
property. This property is used by the system to implement property refinement, and is of interest to the application
wrtter principally for dynarnc (run-time) type creation.

8.1.5 Operation

Type OPERATION is a subtype of type TYPE. This means that instances of OPERATION are also types, and can
have instances of their own. The instances of a particular Operation are viewed as running code - a stack frame in
progress. Thus. Person$marry might be an instance of OPERATION. Its instances would be invocations of the

marry operation, i.e., weddings in progress.

OPERATIONs are implemented by methods. Methods are code written in the language. The arguments, returns.
and exceptions of a method must match those formally specified by the operation it implements. An operation
reters to its method via the OPERATION$baseMethod property; and inversely, the method refers to the
n)peran, n(s) it implements via the Method$implements property. 2

(mtoloic, Inc. 8-5 April 27. 1987

r J



777,747C WrWIT .t -W ." W., V.-- - - - -

SBIR Phase I Final Report Examples UNIVERS Product

.,

Every OPERATION type specifies its formal interface in terms of its arguments, its returns, and its exceptionns. The
argument specification limits the valid inputs to the OPERATION type. The return specification describes the
outputs of the OPERATION type upon normal termination. The exception specification details the particular kinds
of exceptional situations which may arise during processing, and the information returned in these cases.

A trigger is a piece of code which is executed in response to a given event. The invocation of an OPERATION
type is one of the kinds of events which an application writer may wish to monitor. By attaching triggers to
operations, the application writer may perform a variety of functions, including performance monitoring, constraint
enforcement, value derivation, and implementing certain kinds of inheritance not directly supported by the model.

A trigger envelops the OPERATION to which it is attached. A portion of the code is executed first, then control is
passed to the operation proper, and then the remainder of the trigger code is executed. In this way, the trigger can
"see" the state of the world both immediately before and immediately after the operation is invoked (NB: state -
local variable values - is preserved across the operation invocation). How much code is executed before or after the
operation invocation is controlled by the uigger writer by appropriately placing the $$ statement twhich invokes the
enveloped operation).

Multiple triggers may be attached to a single OPERATION. Each new trigger envelops all triggers previously
defined and the base OPERATION. In otherwords, triggers nest in definition order.

Some operations are defined by a type, for application upon its instances. Other operations are free-sunding. The
former are called type-ops, and are somewhat like messages in a message-passing system. The latter are called
free-ops, and are somewhat like procedural-abstractions. Choosing between the two is largely a matter of taste.
When an operation affects the state of only one of its arguments, it is generally described as a type-op, defined by
the type of the argument whose state it modifies. When an operation is not particularly well-bound to any of its
araumentLs. it tends to be described as a free-op.

While in most cases operations can be modeled either as type-ops or free-ops, there is a functional difference
bet,,een the two. Type-ops may have either subtypes or Tefinemens, but free-ops may only have subtypes - no
refinements. The important point about type-ops and refinements is that dispatching occurs upon operation
invoc'ation. The effect of dispatching is to ensure that an appropriate piece of code is run - based on the type of the
dispatch argument. This means that type-ops will avoid some run time type checks, and are on the whole slightly
more resilient to change than free-ops.

The following properties have to do with refinements, and are therefore only meaningful if the
OPERATION$basetype property is non-null (ie if the operation is a type-op).

An operation refinement is an embellishment upon a previous definition. An embellishment can take many forms,
but can NEVER contradict the previous definition. The most common form of refinement is reimplementation of
the same operation specification. This is called method replacement. Other legitimate refinements include:

o Adding triggers to the defined operation 0
o Adding new optional arguments
o Making previously required arguments optiona with supplied defaults
o Changing the declared type of a dispatch (1st argument) to a subtype
o Changing the declared type of a non-dispatch argument to a supertype
o Changing the declared type of the return value to a subtype
o Eliminating previously defined exceptions from the specification
o Adding new exceptions, which are subtypes of previously defined exceptions

It is up to the type programmer to decide whether or not an OPERATION type may be refined. Because of the
strict stance on permissable refinements, no harm will ever conic from allowing refinements; however, certain
compiler optimizations are possible or easier if refinements are forbidden. The set of all refinements of an operation

2. In the current release, an OPERATION rnust have one and only one implcnientaimn; holC er, a reth may implement nr're
than one olperation. in future releases alternate implenentations (that is, nulliic p nieth~

,  per per'ation) mm be allo~wed
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i. stored as the value of its OPERATION$refinements property. The OPERATION$refinesOp property is its
inverse, and denotes the operation which is refined.

Ih overall order of method combination (ie execution) in an environment with both triggers and refinements is
somewhat complicated, but important for the application writer to know. First, the most specific refinement is
located - this is called method dispatching. Next, triggers of that refinement are executed in trigger-definition-order.
Next the base nethod of the refinement is executed.

8.2 Extensibility Using Vbase
The user of the Object Manager adds new behaviors to the system by creating new types. Our fundamental
modeling construct is the ENTITY. The task of creating an application is largely a task of creating a set of types
which model the behaviors in the application's universe. Objects can also model software constructs. For instance
the Sort object defines a particular collating sequence and all the ordering operations in one object.

Objects are defined by type definitions, much like C or Pascal variables are defined by typedef or type declarations.
Type definitions specify both the object's data structure and its operations and serve as a template for the object.
The object, then, can be thought of as a specific instance of its type.

For example if the machine part object in the CAD example is overstressed, it will fail just like the real part will. In
other words, if we call the operation StressCalc with too high a value for load, it will return the value fail. The
details of the calculation and the specific stress limits are related to the object - to its materials, and geometry. So,
in an object system they are bound to the object, not the program. The application program can handle all objects in
the same way, regardless of the algorithms used to calculate stresses and determine failures.

8.2.1 Types

The specification of a type consists of three parts: a set of leration types, a set of property types, and an invariant.
The type which has this behavior spec will be called the base type. The meaning of this spec is, roughly, that
instances of the base type can be operated on by instances of the operation types, can have instances (f the prop.-ty
types, and will always satisfy the invariant.

For example, type CAR defines (in its behavior spec) the operation Refuel. This means that an instance of ,vpe
CAR can have this operation applied to it; that is, cars can be refueled. This operation cannot be appii..d
indiscriminately to all instances of CAR, however. The operation type itself has a specification, which describes
under what conditions it can be invoked, what the results of that invocation will be, etc. The rules for invoking an
operation will be discussed under the heading of Operations, but for now we will make the generalization (not
always true) that an operation can be applied to any instance of the type which defines the operation.

Type CAR might also define the property Enginesize. Instances of CAR can therefore have an Enginesize
property, whose value is a volume expressed in cubic inches. Again, the specifics of when a car can have such a
property, what its value will be, etc., are defined by the spec of the property type. But for now we will assume that
all instances of a type can have all properties defined by the type.

The invariant defined in a type's behavior spec is a predicate, which is asserted to be true of instances of the type.
This invariant is not usually tested (although it can be, for debugging purposes): the type simply declares the
invariant to be true, and this fact is available both to users of the t.spe, and to the compiler. The invariant is detimd
in the context of an instance of the type, and can reference properties of the instance, etc.
Type definitions are divided into two sections - a publicly-visible section defining what the type does and a private,

hidden section defining how it is implemented.

The public section defines the publicly accessible properties and operations. These, in effect, comprise the object's
'guaranteed" external behavior. Changes to these will affect applications fIrcgrans using the object.
The private section defines the object type's implementation and is generally hidden from external view. The

implementation section can include special properties required by the object itself. It can also define the data
storage structure (called the representation) that is used. The representation can he :ho,,en for high performance or
for greatest data compression, for instance. In fact, since all property access is via ol'idt Ions, an object's properties
could be derived and not stored at all.
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In Vbase, operations on a type are specified in the type definition. The operation Partdisplay of the Part type

object type Part is

operations are
Partdisplay (p: Part)
method (shuttlepartldisplay);

end operations;
end Part;

is a simple operation specification. The name of the operation, Partdisplay, is followed by the argument list

enclosed in parentheses. In this case only one argument is passed, identified by the label p. To the night of the
colon following p is the valuespec of the p argument, in this case Part. All operations must have at least one
argument, which is the dispatch argument.

The first argument supplied in an operation is the dispatched argument, which is always of the type for which the
operation is defined. Dispatching guarantees that the proper method for the operation is used. For instance, suppose
a subtype of Part, for example, StructuralPart, refines the operation Part-display. Whenever Part display is
called with a specific part the appropriate method will be used automatically. In other words, StructuralPart's
method will be used if the particular part on which the operation is invoked is also of type StructuralPart.
Operations are restricted to a single dispatch argument, but other arguments can be passed.

An operation performs an action on one or more arguments, and terminates returning zero or one result.
Communication between the operation invoker and the operation occurs through the arguments and results. The
operation Partdisplay could change p, since p is passed by reference. References are abstract pointers to entities.
Entities are never directly manipulated, but are accessed through references. All arguments and return values are
actually passed as references to an Entity, rather than as the entity itself.

The return statement constrains the operation to return an object of the type spec~ied. In the example below, the
operation Partdisplay normally returns an object of type Part.

Part display (p: Part)
method (shuttlepartdisplay)
return (Part);

Only one type may be specified in a return statement.

The method statement declares the name of the subroutine which implements this operation. The method for
Part_display is named shuttlepart-display. An operation can have only one method, but the same method can
be used by several operations.

An operation can terminate by returning the normal result, or, if that is not possible, by returning some notice of an
error. This is called raising an exception. In order to be able to raise an exception, the operation specification
must include the raises statement as shown below:

Part display (p:Part)
method (shuttlepart display)
raises (Nolmage);

The operation Part display can only raise the Nolmage exception (or one of Nolmage's subtypes), because that is
the only exception specification defined.

8.2.1.1 Properties A propery is an Entity which relates two other entities. One of the entities is generally isolated
as the subject, and the other is the value of the property. (For example, "the sky is blue" is a statement which asserts
that the sky has a color property, with the value 'blue'. 'Sky' is the subject; 'color' is the property; and 'blue' is the
value.) Properties are the basic information-carrying constructs in the Object Manager, and model the state of an
entity.

Properties model an entity's attributes and its relationships with other entities; they represent the state of an entity.
They are defined in terms of a set of operations, which access that state. The behavior of a property is specified by a
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property spec, which describes how the property-access operations interact. A property can be thought of as a
directional link between two entities, which are called the subject and value of the property.

The object's properties can be simple or arbitrarily complex. They can range from a single basic value like an
integer to a complicated structure consisting of string values, arrays. sets or. in fact. any other objects in th- system.

Properties in Vbase can be regarded as attributes or record fields like traditional database systems, but that ignores
some of the benefits of the Vbase design. Objects have a state as they do in the real world, and their qualities
change as their behavior changes. A property is actually a special form of operation that assumes physical storage
of the result. This opens a wide range for property behavior--in fact, the whole range of programmable behavior
that is available for operations. Properties are a shorthand for a common database requirement, that is, storage and
retrieval of named values of objects.

8.2.1.2 Operations Operations are the active elements in ihe Object Manager: an operation can create, acces.s, or
mutate objects. Nothing can be done to any object other than to apply operations to it. Operations are essentially
functions (or procedures) and can be called from applications programs. When they are called, they are passed
argumenL and may return an object, like conventional functions.

Operations define the interface between the object and the external world. Thus, at a minimum, all objects have get
and set operations for reading and writing object properties. However, they may have any number of additional
operations. In fact, the operations may be essentially equivalent to library functions and use the object's properties
for storage of their local state.

Operations are procedural abstractions that are implemented by writing code. All interactions with the Object
Manager are performed by the execution of operations. An ,,,peration has associated with it a piece of code, called a
method. Operations can be invoked, where invocations consist of instantiating the operation type; initializing its
state, including its argument list and local variables; and executing the code-block, or method, associated with the
operation. The operation instance is used in the same way that a piece of code accesses the state stored on the
"stack" in a traditional stack-oriented language.

N.2.1.3 Refining Operations An operation refinement can change the implementation of the operation, or the
specification of the operation, or both. Changing the operation implementation means adding new methods.
Changing the operation specification means changing the argument, return, or exception specifications.

A type's operation can only refine its supertype's operations. Each operation refinement contributes behavior, that
is, each defines a set of local variables, and can place additional constraints on the invocation spec and termination
spec. Each operation refinement can also contribute code pieces, or methods. When the operation is invoked, an
operation instance is created, and the methods are combined. The method associated with the lowest level type is
executed first, and, if the $$ call is part of the method code, it calls the supertype operation, on up the line to the
topmost supertype.

When an attempt is made to invoke an operation, the type of the first argument of the argument list is compared with
the type of the operation and all its refinements. The lowest-level refinement whose type is allowed is chosen for
instantiation. This is called the d!ispatching process, and the first argument is the dispatch argument. Dispatching is
the first action of the Object Manager when an operation is invoked. The second action is the actual execution of
the operation, and the third is the return of the operation to its invoker.

A refining operation must refine the dispatch argument to match the subtype. For example,

object type Structural_Part is

operations are
refines Part-display (p • StructuralPart)

method (structural Part display);
end operations;

end Structural Part;

specifies a different method ir the Part display operation, %%hich onl) e)pct_'s on structur1l parts rather than all
parts.
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No other changes to the argument list can be made (such as adding or dropping arguments).

The returns statement can be changed to specify the subtype value specification. For instance,

Part display (p : Part)
return (Part);

can be refined to

Part-display (p: Structural_Part)
return (StructuralPart);

which will be the desired behavior in most cases.

8.2.1.4 Defining Argument Lists Any argument except the first, dispatched argument can be passed by association
with a keyword rather than by its position. This feature is useful for long argument lists, particularly if many of the
arguments are optional. The keyword arguments are separated from the positional arguments by the reserved word
keywords in the definition of the argument list.

The arguments defined after the keywords reserved word are associated with the formal parameters by argument
name, rather than by position. For example, the Part display operation could be defined with additional
parameters specifying color of the display and the rendering level.

Part-display (p:Part, keywords c: color, rlev: Integer)

Now invocations of the Partdisplay operation do not have to pass the arguments in order, so long as they are
labeled with the argument names.

Keywords arguments can be declared as optional by including the reserved word optional in the argument list. If
the definition above is changed to

Part-display (p:part,
keywords c:color, optional rlev: Integer);

then the rlev parameter does not have to be specified when the operation is invoked.

The action taken if rlev is not provided is determined by the operation itself, either by the use of the optional clause,
or by testing the argument for validity inside the method implementing the operation. Normally, any attempt to
access an optional argument which was not passed and does not have a default value will result in the NoValue
exception. There are two exceptions to this rule, however: the argument can be explicitly tested for validity using
the hasvalue construct or it can be used as an optional argument to another operation. If an optional argument is
passed to another operation (where it must also be an optional argument) and the argument has no value in the
caller, it also has no value in the called operation. Neither of these two accesses to the argument triggers the
NoValue exception.

Default values may be provided for optional arguments in the same way that default values are assigned to

properties in the properties statement. An argument with a default value is specified as

optional name:type-specifier := expression

For these arguments, the default value, as defined by the expression, is provided to the operation if no explicit value
is furnished.

For instance, a default rendering level could be provided as

Part display (p: Part,
keywords c:color, optional rlev: Integer :=1);

where the value I means that wire-frame rendering is the default.

8.2.2 Defining Exceptions

The exception handling mechanism consists of two parts, the raising of exceptions and the handling of exceptions.
Raising is the way an operation notifies its caller of an exceptional condition; handling is the way the caller responds
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to such notification.

An exception is an object that is created when one of a specified class of exceptional or unusual events occur.

usually an error. The exception object is passed upwards through the flow of control until the relevant piece of code
for handling the exception is found. The act of creating an exception object is called raising the exception while thet
activity of the exception handler code is known as catching the exception.

When an exception is raised, information about the context of the exceptional event is saved as the values of the
properties of the exception, defined in the definition of the exception. There is a hierarchy of exception types (as
with all other types), each member of which may augment its supertype's definition by defining additional
properties. All exceptions, however, are subtypes of the exception type Failure.

Exceptions are defined in much the same fashion as types are: users can create their own exception definitions to

cover particular exceptional events. A number of predefined e.iceptions are included in the system, for example

object Exception OutOfMemory is
supertypes := Failure "
properties are

AmtRequested Integer;
end properties

end OutOfMemory;

The only distinctive piece of information defined by this exception is the amount of memory the failed request was

seeking. The handler of this exception could use this information to reduce the size of the request or to attempt a
different approach to the problem. All exceptions are directly or indirectly a subtype of the exception Failure.

The exception specification of an operation can be changed by a refinement to exclude any' exception condition
mentioned in the original definition, or to add exceptions which are subtypes of exceptions mentioned in the ori.E~inal

definition. For example, type Number defines the operation square_root, which has an Imaginary e,\,.eption. %% hic'h
is raised when the input is negative. The type Complex refines square_root to exclude this exception.

User-defined exceptions are defined in the same way. For instance, the Partdisplay operation could ha\e the

following exceptions:

object type Part is

operations are
Part_display (p: Part)

method (shuttle part-display)
raises (Nolmage)

end operations;
end Part;

where the only exception raised is the Nolmage exception. If an operation raises an exception, that exception mu.I
be defined to the system. The Failure exception is provided by Vbase, but the Nolmage exception shown aboe
must be defined by the user. For instance, there could be a general type of Part exception, of which Nolmage is a

subtype, as shown below:

object Exception PartError is
supertypes := Failure •
properties are

errortext : Strinc
enJ properties;

end ParEiror;
object Exception Nolmage is

stupertypes := PartError •
end Nolmage;

"[he exception Nolmage does not add any new properties, but exists only to distinguish the different ca,,e,, oll
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PartError exceptions.

The property specification, as described above, translates directly into operation specifications on the operati, ,
which provide access to properties. The advantage of a property specification is that it is more compact. F,
example, the valuespec in a property definition translates into portions of the operation specifications of a nuj'rv-r

of different operations; this spec need only be stated once, and the system will propagate it to the correct opera rn
specs.

8.2.3 Defining Iterators
An iterator is a special case of operations that provides a generalized looping behavior for aggregates of objecit. It
is specified much like an operation, except that no value is returned, but rather, there is a yield statement \kih
similar syntax. A return statement returns a value of the specified type at termination of the operation. A \i !11
statement, on the other hand, returns the current value of the specified type and suspends the operation, rather h:Kin
terminating it.

Iterators may only be invoked as part of the language's iterate looping construct. An iterator thus invoked runs as a
limited form of co-routine, processing as much as needed between loop iterations to supply a value for the next
iteration of the loop. The loop terminates when the iterator returns (instead of yielding) or when the body of the
loop exits. In all cases, the iterator invocation is terminated before control leaves the body of the loop.

An example of an iterator is in this definition of the type Aggregate:

object type Aggregate is

operations are

iterator Iterate (a:Aggregate)
yields (e:Entity);

end operations;
end Aggregate;

The operation Iterate is an iterator, as shown by the keyword iterator, and yields one value of type Entity, hich,
logically, should be an element of the aggregate.

The Iterate iterator for type Aggregate is provided by Vbase and, since all aggregates are a subtype of Aggregate,
it is inherited by all aggregates. Users can define iterators as well, or refine the Iterate iterator if they create
Aggregate subtypes.

As with all other operations, iterators are implemented with methods. There is one fundamental distinction between
iterator methods and other methods: logically, the iterator method runs as a co-routine to the body of the loop.

When an iterate statement is executed, the iterator method is run until a yield statement is reached. The yield
statement returns an element to the iterate statement, which assigns it to the iteration variable, and the body of the
loop is executed. After the body is executed, control returns to the iterate statement. At this point, execution
continues from the point immediately following the yield statement, with the local state preserved. Global state may
change, but the flow of control and local state continue as if the yield statement were not present.

When the iterator method returns, the loop is terminated. Note that all iterator functions are null-valued (no return
value is legal for return statements in an iterator method).

Iterators may also be exited by a break statement occurring within the loop body or by some other standard transfer
of control out of the loop body. When such an exit occurs, it looks to the iterator as if the yield statement raised an
exception. The exception provides the mechanism to unlock any locks that may have been gathered by the iterator
and other such symmetric functions, through the use of protect statements.

Other exceptions raised by the execution of the loop body. and not caught within the loop body, also cause an
exception to be raised in the co-routine. In general, the protect statement offers the safest way to guarantee that a
piece of code is executed following a statement or upon termination of the loop. If an exception is raised in this
way, the co-routine is aborted.
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S.2.4 Defining Triggers

A method is bound to a trigger in a similar manner to any operation definition or refinement. The keyword trigger
is used to identify the trigger method.

object type Part is

properties are
ECN: EngDoc inverse EngDoc$OfPart;

define set

method (Entity$genericSetmethod)
triggers (check_ECN);

end properties;

end Part;

Triggers allow the programmer to insert a method in the operation execution chain before or after any refinement or
base definition of an operation. This is generally useful when the implementor of the trigger does not have or want
:iccess to the implementation details of the operation but does want some additional behavior to take place.

A trigger is attached to the definition of an operation or to one of its refinements. Its method is executed prior to the
execution of the method for its host type. An operation can have multiple triggers.

8.2.5 Interfaces

Name contexts restrict name visibility, so access must be provided from one name context to names in another name
context. This is accomplished through interfaces. Interfaces are simply aggregates of names. In a sense, one can
think of name contexts as aggregates of names, too. Name contexts are distini,.uished from interfaces in that name
contexts provide scoping. Interfaces merely provide a convenient way of grouping a set of names; they have no
effect on scoping. Interfaces are themselves named objects, and can be used to establish the visibility of the narnes
they contain in name contexts other than that which defines the interface. This is done by using the import
statement as shown below,

object package Parts-Module is

import Documents;

end PartsModule;

where Documents is an interface defined elsewhere. The effect of the import statement is to cause all names
contained within the Documents interface to become visible within the Parts Module name context. The names
visible in a name context are all names introduced by definition inside the name context plus all names inherited
from containing name contexts combined with the names made visible by importing interfaces into the name
context.
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9. Conclusions
This section summarizes our conclusions and recommendations. We %Aill evaluate the extent to x. hich our approa, h
supports extensibility, and the feasibility of building a prototype of the system for the Phase II effort. Our goal for
Phase I was to examine concepts in the Object Manager which support extensibility. We wanted to document
product requirements, and develop a concise, semi-formal specification for the software to be developed during
Phase 11.

9.1 Phase I Results

The objective of this initial effort was to examine and define the project and product requirements. An additional
goal was to evaluate the feasibility of building the product (prototype in Phase If, market-ready version in Phase
Ill). We pursued four activities:

" Examined design application needs to establish basic objectives and criteria for the system.

" Examined Ada language issues relevant to persistent object storage.

" Described an Ada/Object Oriented Data Base interface.

" Assessed the feasibility of building the interface.
Table 9-1 summarizes our conclusions about the effectiveness of this approach.

TABLE 9-1. Analysis Summary

Criterion Analvsis
Use integrated language to express complex modeling

Expressibility through objects, types, operations, and properties.
Enforce semantic restrictions through strong typing.

Modularity Separate specificationlimplementation.
Cluster properties and operations into abstract data type descriptions.

Flexibility Use Vbase access to dynamically create and access objects, types,
Flexibility__ operations and relationships. Handle exceptional conditions.

Efficiency Separate specification/representation.
Use Ada pragmas and representation specifications, V'base storage pragmas.

Persistence Rely on Vbase automated storage management facilities.
Able to use Vbase's "DBMS Amenities" such as concurrency control.

9.1.1 Defined Issues and Identified Needs

We examined the particular needs of CAD/CAM developers, and identified their need for extensible databases.
That study demonstrated that object-oriented technology offered an excellent solution to their problem. It also
investigated the feasibility of combining the concepts of modularity and abstraction from programming languages;
persistent storage from database systems; and objects from research prototypes.

We feel that Vba.,e, as an object-oriented database, embodies the necessary technology for database extensibility.
The concepts of inheritance and refinement provide superior support for extensibility, with a database system
providing performance potential to meet the most demanding needs of computer aided design support systems. The
question, from our point of view, was whether Ada provided adequate and reasonable means to support access to
persistent objects - in a well integrated and efficient manner.

9.1.2 Examined Ada

We examined Ada language issues from the perspective of adding persistent storage, using Vbase. Our focus
during Phase I was not to solve all of the details of such an interface, but to explore the risk areas and as,,ess the
difficulties of the approach. Table 2 compares some of the pertinent features of Ada and \'base. We decided
building the interface is feasible, and that there are certain features we can exploit to integrate Ada with our product.
However, there are a few areas which may pose unusual implementation difficulties:
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TABLE 9-2. Summar% of Features

Criterion Ada Features \'base Features
Variables, types, subtypes Object %ersions of same (plus iteratcrs)

Expressibility packages, subprograms and exceptions as database entities

Modularity Separation of specification and body (Same)
F context clauses import clauses.

Flexibility (with) Run-time method dispatching

main memory representation clauses Secondary storage pragmas
EfIiciency Compile-time optimization Strong type checking
Persistence package DIRECT 10 Automatic storage management

" Integration of the type systems of Ada and Vbase, and the degree of type checking available,

" The difficulty of translating Vbase Data Model informaion into Ada package structures in the Ada program
library,

" The compatibility of specific Vbase constructs (for example, iterators and exceptions ) with Ada,

* The interaction of representation specifications, storage pragmas, and the Ada compiler.

9.1.3 Described Interface

We presented an approach for integrating Ada and Vbase and a description of the Ada!Vbase interface. The key
element of this interface was a unified language for data definition, object manipulation, and application
development. We selected Ada as an interface to Vbase for two reasons:

1. It integrates, in one language, much of the support for modularity and abstraction we support in Vbase.

2. Its standardization guarantees wide availability and a great deal of consistency between implementations - it
is a reasonably stable interface.

We developed examples of Vbase entities which demonstrated the sort of database extensibility required by design :%
applications. We built a parser for the interface language, and used it to check the consistency of our examples.

9.1.4 Analyzed Feasibility

Finally, Phase I analyzed the feasibility of actually building the interface. The implementation of the Vbase is based
on the use of a preprocessor program to link the object-oriented system to a traditional programming language. The
effect is to embed the functions of the database at both compile time and run time. We propose a 3i iilar form of
implementation for the Ada interface.

The purpose of the Phase II effort is to explore the risk areas by building a prototype version of UNIVERS. We
decided that the Phase II effort is feasible, and will result in a product which makes object-oriented technology
available to a large market: the Government and its supporting contractors. The combination of Ada and Vbase
provides a powerful system which meets the needs of design applications. The architecture we've defined presents
the system in a flexible, yet consistent, package which should be easy to use for design application builders used to
working with Ada.

9.2 Phase II Approach
Our goal for the UNIVERS product is to combine the expressibility of modem programming languages and the

persistent storage management of databases with the inheritance/refinement mechanism of object-oriented systems
to provide an extensible database system. The Phase 1I efforts implement the Ada/OODB interface defined during
Phase I. Our objective for Phase I1 is to demonstrate a working Ada access to Vbase. We are concerned with three
primary goals:

o To provide integrated support for persistent objects. The support should be as transparent as possible to utcrs (f
the system.
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" To make the system as type-safe as possible.

" To provide Ada access to the complete Vbase development system - including the database, an interactise
object editor for traversal of type and object definitions, a verifier to check physical database consistency, and a
debugger for operations/method examination

To accomplish these goals, we will pursue three major tasks:

" Designing and building the pre-processor

" Designing and building the Ada interface package

* Designing and building a small application which uses these two pieces to demonstrate the access to Vbase.

Table 9-3 summarizes Phase II of this project. We will build initial versions of the Pre-processor (described in
Section 6) and the Interface Package (described in Section 7). We will also provide an application which
demonstrates the working interface to Vbase. A Final Report will accompany the working software.

TABLE 9-3. Phase II Work Efforts

Deliverable Work Efforts
Build on the Phase I recognizer to use the Vbase interface.
Build the Ada package extractor.

Database Interface Build Ada package(s) providing access to \Tbase from the Ada program library.

Build an application which uses the pre-processor, data model, and
interface package to demonstrate extensibility.

Design Document the design approach, including
plans, "as built" specification, test & integration results

The work on the pre-processor will concentrate on the issue of type compatibility between Ada and Vbase. It will
explcre the difficulty of integrating their type systems to support our type checking goals for the product.

As part of the pre-processor, but as a separate work effort, we will prototype an Ada "package extractor". This
effort will explore the difficulties of reflecting changes in Vbase state into the Ada program library. It will also
examine the problems associated with automatic Ada code generation.

The prototype of the interface package will examine any issues of run-time library integration between Ada and
Vbase. It will provide procedure-level access to the storage management layer of Vbase.

We will also build a small application to test the components of the prototype. It will demonstrate the degree to
which we've achieved our goals.
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A. Glossary
This sections defines terms we've introduced or referenced from the literature.

Abstraction The essence of abstraction is to extract essential properties while omitting inessential
details.Rs

7 5

,

01%
Abstract Data Type A specification of the implementation of the abstract entities and operations 'Ahich are

encapsulated so that the only way to access or modify the entities is by the abstract
operations.Rw8O

Allocator The evaluation of an allocator creates an object and returns a new access value which
designates the object.DOD83

Compilation unit A compilation unit is the declaration or the bodv of a program unit, presented for
compilation as an independent text. It is optionally preceded by a context lfau.%e, naming
other compilation units upon which it depends. D° D83

Derived type A derived type is a type whose operations and values are replicas of those of an existing
type. The existing type is called the parent type of the derived type.L)ODS3

Exception An exception is an error situation which mayi arise during program execution. To raise an
exception is to abandon normal program execution so as to signal that the error has taken
place. An exception handler is a portion of program text specifying a response to an
exception. Execution of such a program text is called handling the exception.[r° DO3

Generic unit A generic unit is a template either for a set of subprograms or for a set of pack-ges. A
subprogram or package created using the template is called an instance of the generic unit.
A generic instantiation is the kind of declaration that creates an instance.

A generic unit is written as a subprogram or package but with the specification prefixed by
a generic formal part which may declare generic formal parameters. A generic formal
parameter is either a type, a subprogram, or an object. A generic unit is one of the kinds of
program unit.pO

D 83

Information Hiding A design decomposition method where every module is characterized by its knoA, ledge of
a design decision which it hides from all others par72, Par7Tl

Object An object contains a value. A program creates an object eithkr by elaborating and ,blect
declaration or by evaluating an allocator. The declaration or allocator specifies a type for
the object: the object can only contain values of that type. D D8 3

Overloading An identifier can have several alternative meanings at a given point in the program text:
this property is called overloading. For example, an overloaded enumeration literal can be
an identifier that appears in the definitions of two or more enumeration types. The effective
meaning of an overloaded identifier is determined by the context. Subprograms,
aggregates, allocators, and string literals can also be overloaded. D D1 3

Package A package specifies a group of logically related entities, such as types, obiects of those
types, and subprograms with parameters of those types. It is written as a package -
declaration and a package body. The package declaration has a visible part, containing the
declarations of all entities that can be explicitly used outside the package. It may also have
a private part containing structural details that complete the specification of the visible
entities, but which are irrelevant to the user of the package. The package bo-dv contains
implementations of subprograms that have been specified in the package declaration. A "

package is one of the kinds of program unit.D)DS
3

Polymorphism In the context of object-oriented programming. polymorphism refers to the capability of
different classes to respond to exactly the same message protocols, allowing
interchangeable pieces as enabled by method sending Si ei 6 .
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Record type A value of a record type consists of components which are usually of different types or
subtypes. For each component of a record value or record object, the definition of the
record type specifies an identifier that uniquely determines the component within the
record.

DoD 83

Representation clause A representation clause directs the compiler in the selection of the mapping of a type or an
object onto features of the underlying machine that executes a program. In some cases,
representation clauses completely specify the mapping; in other cases, they provide criteria
for choosing a mapping.D ° D83

Suoprogram A subprogram is either a procedure or a function. A procedure specifies a sequence of
actions and is invoked by a procedure call statement. A function specifies a sequence of
actions and also returns a value called a result, and so afunction call is an expression. A
subprogram is written as a subprogram declaration, which specifies its name, formal
parameters, and (for a function) its result; and a subprogram body which specifies the
sequence of actions. The subprogram call specifies the actual parameters that are to be
associated with the formal parameters. A subprogram is one of the kinds of program
unit.DOD83

Subtype A subtype of a type characterizes a subset of the values of the type. The subset is
determined by a constraint on the type. Each value in the set of values of a subtype
belongs to the subtype and satisfies the constraint determining the subtype.DODs 3

Trigger An object, a triggered action, and operations on the object that will, as a side effect.
activate the triggered actions.Ber 87

Type A type characterizes both a set of values, and a set of operations applicable to those values.
A type definition is a language construct that defines a type. p

DODs3

Transaction An execution of one or more programs that should appear to be atomic relative to other
transactions, in the sense that transactions appear to execute serially, and that each
transaction either executes in its entirety or not at all. Bcr s7

Visibility At a given point in a program text, the declaration of an entity with a certain identifier is
said to be visible if the entity is an acceptable meaning for an occurrence at that point of the
identifier. The declaration is visible by selection at the place of a selector in a selected
component or at the place of the name in a nated association. Other\ise, the declaration
is directly visible, that is if the identifier alone has that meaning.DODS3
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B. Acronyms

AI() An Instance Of

AKO A Kind Of

A PO A Part Of

A PS F Ada Programming Support Environment

BSI) Berkeley Systems Distribution - one of the two main variants of the UNIX operating system.

( 'A 1) Computer Aided Design

( '\A Computer Aided Manufacturing

.ASF Computer Aided Softw. are Engineering

('Il Computer Integrated Manufacturing

I)INDB Data Base Management System

1)1)1. Data Definition Language

l)NIL Data Manipulation Language

ECA l) Electrical Computer Aided Design - CAD for electrical engineering design.

NICAi) Mechanical Computer Aided Design - CAD for mechanical engineering design.

\11 IS Million Instructions per Second - a measure of computer processing power

()(HDB Object Oriented Data Base

VLSI \ers L.arge Scale Integration

.-°
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D. Grammar

The syntax is presented in a modified BNF using the following notational conventions: *

bold Terminal symbols ~
italic Non-terminal symbols

[X Zero or one occurrence of X

{X Zero or more occurrences of X

1. Declarations
Declarations describe objects and relationships. They also describe operations and object representation.

compilation : [import-form ] form

form :: module -definition

entity-definition

type-definition

variable -definition

constant-definition

operation -definition -

exception-definition4

module-definition :> object package defn-header is

{module-form}
[private { type-form }

end [db-name]

entity-definition : ojetd-simple-type db-,nampe is

{module-form}
end [ db-name]

type-definition := object type defn-header is

{type-form
end I db-name];

variable -definition ::~object db-narm vspec-expres sion

[ expression ];.

Ontologic, Inc. D-l April 27. 1987
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constant-definition object db-name : constant [ dh-simple-type ]
= expression

operation-definition object procedure db-name [(parameter-list}]

[raises ( exception-list) ] is

{ method-spec}

{operation-form}

{ declaration }
begin

{ statement }
end [ db-name] ;

object function db-name [ (parameter-list)]

return db-simple-type

[ raises ( exception-list ) ] is

{ method-spec }
{operation-form}

{declaration}

begin

{statement}
end [ db-name]

method db-name [(parameter-list)]

[raises ( exception-list ) ] is

{method-spec}

{operation-form}

{declaration}

begin

{statement } S

end [db-name]

iterator db-name [ ( parameter-lh.t ) ]
yields db- simple- type

[ raises ( exception-lit) ]is

{ method-spe

{operation -orm }
{ declaraion }

begin

{ statement

end [db-nanw]

Ontologic, Inc. I)-2 Apili 27. IO),N7
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exception-definition object exception db-name

[(parameter-keys)] is

{exception-form}
end [ db-name]

declaration enter module-name

type-specifier;

import-form = import db-name db-name }

module-form form

initializer

defn-header db-name [ (parameter-list)]

type-form module-form

instance-properties

instance-operations

representation

instance-properties properties are

{ property-spec }
end properties;

instance-operations operations are

{ operation-spec }
end operations;

representation for representation use

{ rep-defn}

end representation;

Instance Properties

property-spec [ refines ] db-name :

[property-kind]

vspec-expression

Ontologic, Inc. D-3 April 27, lQ,7
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[:= expression]

{ property-option }

property-kind optional

distributed

property-option property-kind

allows(prop-acc {,prop-acc} )

disallows (prop-acc {, prop-acc })

i inverse db-name

% unrefinable

constrainable [to vspec-expression ]
.-- object prop-op

[raises (exception-list )]
{ method-spec 4

prop-acc get

% set

init

prop-op get

set

Instance Operations

operation-spec [refines ] procedure identifier [ (paraneter-li.t ) ]
[raises ( exception-list)]

{ method-spec}

[refines ] function identifier[ (pareneter-list)]
return ( return-list )

[raises ( exception- list)

( method-spec

[refines ] iterator identifier [(paratrwtr-it ]

yields ( return-list)

[ raises (exception-list) ]

Ontologic, Inc. D-4 April 27. 19S7
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{method-v pec}

parameter-list [parameter-spec {,parameter-sJpec}]
[keywords param-key-spec {,param-key-spec }

return-spec [identifier => ]vspec -express ion

exception-list [exception-name {,exception-namne}

mnethod-spec method (method-name)

- triggers (method-name method-namne}

operation-form initializer

.statement

exception-form initializer

mewthod-name db-natne

parameter-spec conlstrainsJ identifier vspec--exJ'res, ion constraint- spec %

param-key-spec optional parameter-spec [ expre.sxi onJ

paramewter-spec

(:nnstraint -spec = constrainahie [to vspec-expre.so n]

Representation

rep-defn identifier type-expressi .on [storage,- laYout]

storage-layout =cluster-clause

( storage-layout)

storage-layout and stora, e-layvout

storagi'-layout or siorage -lav' ut

Ontologic. Inc.D- pd7,18
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cluster-clause cluster-type cluster-loc

cluster-type filed

clustered

stored

cluster-loc separately

with db-name [ ( expression ) ]

2. Names

We have kept the semantically distinct name spaces of Ada and Vbase separate hy distinguishing them syntacticall\.
The $ lexical element is not used in Ada, and indicates a database object name.' We make this syntactic distinction
even where the underlying semantics are very similar. For example, it will be impossible to define an Object
Manager type as a subtype of some user-defined Ada type. Htowever, it "ill be possible to assign values between
objects of "compatible" types (for example, and Ada Integer and an object Integer). The $S symbol has two use,:
to anchor a database path name at the root name space in the database; and to the "net" method in a sequence tsce
the discussion of Statements).

1. In penerat. we have decided to use syntactic forms of re.olving difficult srmjntic A,'iic wherevcr pv.Ihle This may be a less
palatable approach for language "punsis." but saves us considerdhle effort in iriplenicnting d prt),Ape in Pha'c 11. We can

crainly reconsider this decision after the prototype is working

)n o)hgic, Inc. I) 6 April 27, 1987
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db-name identifier

$ db-name

dh-name S dh-nwnew

interface-namne SS module-name

module-name

mowdule-mn c identifier

- mdule-name $$ identyir

type-.vpcctfier object obj -type

oh1- type identifier [(olhyct-arg -ist)]

dh-sitrnplc-txpe dh-tvPe-naw [ argunzent-li t)]

3. Expressions
We have not settled the issues regarding an integration of expression eleerct. in the t"o naime j),i, v,. no~k. l A e
will1 prov ide little i mplicit conversions between the Ada and \'base types. The pireli -p, ;e, [ k I I ik , (ni tic not mal
Ada overloading and subtype semantics to resolve ambiguities.

Some of the unary operators which appear to be "built-in" to the langrrag A ill be trwi\,ofi med b the life prnkesmor
into calls to the Vbase runtime.

Ontoogi, In. 1 7 . 1)1S
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initializer identifier expression

identifier:= aggregate;

v.spec-expression type-expression e
uniontype ( vspec-expression , vspec-expte.sion r

( vspec-expression )

type-expression dh-simple-type

enum (enum-values)

record ( record-fields)

variant ( record-fields)

primary-expression $ identifier

interface-ref $ identifer

primary-expression ( [ object-arg-list ]
$$ ( object-arg-list)

primary-expression identifier

assert ( primary-expression, ohj-type

'orstructor

enable ( primawrv-exprcs.,n , ohj-type

constructor identifier $( expression-li.t)

identifier $( index-valuei-list

identifier $( key-value-li.%t

ohject-arg-list etpression [, object ar,-ht ]
identifier expression [ ,,j, t-ar,-l, , t

argumnent-list [ arurent { argument } ]

argument exp-es.sion

identifier => epresson

Ontologic, Inc. D-8 Apr il 7 1 QS '
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4. Statements 8

The "statement" $$ indicates the "next" method in sequence, which may be one of:

- A "trigger" in a sequence of triggers.

* A "base method" of the referenced operation.

* A method or trigger on the "supertype" operation. ,

. A method or trigger on an operation for which the referenced operation is a refinement.

All of these statements are transformed by the pre-processor into ANSI Ada, and ultimately realized by the

subprograms in the database interface package. Some, such as iterator, pose interesting problems. We % ill explore
these further in Phase II.

statement :: except ( identifier: identifier)

statement-list

end except;

protect statement

raise identifier [ ( oject-arg-list ) ]
reraise identifier [ ( ohject-arg-list ) ]" -'

iterate ( identifier prirnar,-expression ) statement

iterate ( identifier identifier ( object-arl-ist ) statement

: yield ( expression

call

call :: db-name [( ohject-arg {, ohject-arg } ,]

Ontologic. Inc. I )April 27, 1()7
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E. Software
This appendix describes the software of the parser which recognizes the languace~'e defined.

main

initial

Figure E-1. Recognizer Function Narnes -

Figure E- I illustrates the software hierarchy . using the narn,:> of speci fic C t unii'l

1. Makefile
Thijs tile specities the inter tile dependencies to the wJ'N\ ilv make. 'Ar his L'n1 1! (A 111C 1111. ir

hierarchy, make can automatically generate newA, %ersions of the \\s 4cm in::eri.r!1! s -- rcow'I ;1111' I
relinking only, those modules \A.hich hav.e been rnodified.

NAME parser
OBJS =lexo itiI.n S(NAME).o \%crroro getopt o
SRCS = ext tdllv S(NAMFt. :vcrr co
FILES = makchlc S(SRCS) S(NAMLJ1 I
YEI.AGS = --vd
CFLAGS = -~g -DYY'DEIBG
LDFLAGS =-

S(NAME) S(OBJS)
cc S(LDFLAGS) --o S(NAME) S(OBJS) --If

tags makcfilc
etags -~t vycrrore izctopt.c yaccpar S(NAlE).c
touch tagsN

U Lse the default 'make' rules for Yacc and Lex

lex.t x.t;Ab.h

tilo y.tok.h yaccpar

x tah.h: y.tab.h
-cmp -s x.tab.h y.Lab.h .zp y.tab.h x.iaj'.h

Ontologic, Inc. Il Ipl7 '
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2. Main Routine
The main routine uses initial and getopt to parse command line arguments and set the appropriate internal
modes. It invokes the syntax analyzer through the call to yyparse.

1" $1feader: parser.c,v 1.4 87/03/31 14:17.33 vilot Exp $ */
i* SLog: parser.c.v $ Revision 1.4 87/03/31 14.17:33 vilot
* Added getopt' and debug option at the command line for xydebug'

* Revision 1.3 87/03/02 11:08:29 vilot Minor changes.

* Revision 1.2 87/02 ,25 08:38.46 vilot Clean version ['old' TDL)
,

* Revision 1.1 87/02120 17:29:13 vilot Initial revision

*/

,#include <stdio.h>
#include <strings.h>

extern int lines, 1* Input line number (see: lex.li
extern int numerrors; /* number of errors found (see: lex.lh ,'

r: extern char *filcnamc(l; /* buffer for filename in error message */

#ifdef YYDEBUG
extern int yvdcbug;

static int
initial (arg,, arg%,) I nitial

, int argc;
, char *argv[]; I

extern int getopt (0;
extern char "pujrg; retpt option value access *

extern int optind; , gelopt: will be index to Ist operand
int optc'r = 0; number of erors * ;
int flag; option flag characters *
char *optst-ng = z .etopt: string to be filled */

d'4; d = yydebug */
char *usagc = iuage error me.sage /
'-d] fies";

while ((flag = getopt (argo, argv, optstnng)) EOF)
%witch (flag) {
ca~'e d':

yvdcbug - 1;
break;

3#itde, 0
ce t

traceflg T,
break,

#endif
cable
default:

optcrT..+
break,

if (ojtcrr) (
fprintf (stdcrr, "I'sage. s % s n" argv[0], uage);
exit (1)*.

I~ II)

return optind;

Uendif YYIHlII .G

Ontologic. Inc. A.pt 127, 1NS7

-S..-~~~ ...~~'* . . . . . . -*.. .5'..



SBIR Phase I Final Report Software UNIVERS Product

m.--n (argc, argv) 1* parser: check Ada /7DL grammnar 1fil
int airiC;
chair .zTgvll;

* VIILE *fp, *freopcn 0
int arg: /* index to 1st argument *

inti;/* index ov'er file arguments ,

arg =initial (argc, argv);

if (argc ==I) 1{/ no args; copy standard input *
strcpy (filename, 'rstdinl');
yyparse()

Ielse
for (i = arg; i < argc; i++)

i r ((fp =freopen (argv[i], 'Y', stdin)) == NULL.)
printf ("parser: can't openl %s\n", argv[i]);
break;

I else
strcpy (filename, argv[i]);
lines = 1;
yyparse 0

exit (num-errors);

()ntL)I~ic, Inc. E- 3 April 27. 1987
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3. Command Line Options

There is currently only one command line option defined - for enabling a debugging trace of the parsing
actions.

$11eader: getopt.c,v 12 87/01/27 09:53:20 vilot Exp $

Dependencies */

#include <stdio.h>

•Globals *

et option letter from argument vector */

int (pterr = 1, /* useless, never set or used /
optind 1, /* index into parent argv vector */

optopt; /* character checked for validity */

char *optarg; /* argument avsociated with option */

#define BADCH (int)'?'
#define EMSG
#define tell(s) fpurs(*nargv,stderr) ;fputs(s,stderr); \

fputc(opt)pt,stderr);fputc('\n',stderr);return(BA[)CII);

int
".uct (nargc, nargv, ostr) g Copt
int oargc;

char **nargv, *ostIr;
{0

static char *place = EMSG; /* option letter pro,:c. ;
register char *oli; /* option letter list index */

-har *index 0;

if (!*place) {* update scanning pointer */
if (optind >= nargc 1 *(place = nargv[optind]) != "-' II !*-place)

return (EOF);
if (*place == '-') I /* found */

++optind;
return (EOF);

/* option letter okay? */
if ((opwnpt = (int) *place++) == (int) " 11 1(oli = index (Ostr, optopt)))

if (!*place)
+ +oplind;

tell ( i: illegal option -- ");

if (*++oli '=') /* don't need argunent *1
optarg - NULL;
if (!*place)

++optind;
else ( /* need in argument */

If (*place)
optarg = place; /* no white space */

else If (nargc <= ++optind) I /* no arg */
place = EMSG;
tell (": option requires an argument

else
optarg = nargv[optindl; /* white spac'e */

place - EMSG;
+4optind;

)nfologic, Inc. FA April 27, 107
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return (optopt); /* dump back oplion It-iler*/

V.

W,
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4. Syntax Analyzer

This is the yacc input source, which produces a table-driven parser. The parser implements the language
defined in Appendix D. It invokes the lexical analyzer via calls to yylex.

/* $11eader: tdl.y,v 1.8 87/04/17 15.21.17 vilot Exp $ */
/* SLog. tdl.yv $
* Revision 1.8 87104117 15:21:17 vilot
* This version passes all the simple tests, including nulliest.a,
* constan.tdl., and package.tdl.

* Revision 1.7 87/04/17 15-11.48 vilot
* This version passes all four "ds" tests: entity, property, operation,
* and type
*

" Rev;vion 1.5 87104/16 12:3117 vilot
* Added some more rules, refining 'form" ( 7 Apr 87 )

* Revision 1.4 87103/31 14.16:33 vilot
* This version agrees Jat the top level] with Section 6 of the Report.

*J

* Revision 1.3 87/03/02 11.07.15 vilot
* Cleaned up grammar. This version works ok, but has
* shift/reduce errors due to optional constructs in 'Properties'

*/

/*%terminals * /
%token identifier numeric literal string literal character literal
%token ACCESS ALL - ANt) ARRAY AT
%tokcn BEGIN - BODY -
%token CASE CONSI'ANT
%token DECL-ARE DO_
%token ELSE ELSIF_ END EXCEPION EXIT
%token FOR FUNCTION_ - -

%token GENERIC
%token IF IN IS
%token LOOP
%token MOD
%token NEW NULL
%token OF OR OTI-ERS
%token PACKAGE PRIVATE PROCEDURE_
%token RAISE RECORD REHURN
%token SELECT SUBTYPE
%token THEN TYPE
%tokcn USE
%token WHIN WHILE WHIT1_
%token ALLOWS ARE_
%token CLUSTERED CONSTRAINS CONSTRAINARI.E
%token DEFINE_ DISALLOWS DIS TRIB L'TD
%token ENUM
%token FILED
%token IMPORT INVERSE ITERATOR
%token KEYWODS_
%token METHOD
%token OBJECT OPERATIONS OPTIONAL
%token PROPERTI ES
%token RAISES REFINES REPRESENTATION RETI !RNS
%token SEPARATELY SI b)RED - -
%token TO TRIGGERS TYI'E PROPERTIES
%token UNLONTYPE UNREFINABLE
%token VARIANT
%token YIELDS
%token ENTER EXCEPI" GE'REP ITERATE MAKEREP PROTE"T RE7RAISI YIELD
%token ARROW_ DBLDO- EXP_ ASSIGN NOTEQL_ (;IEQ_ [IEQE. IA IL R .I. -ItOX1

Ontologic, Inc. E-6 April 27, 1987
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s~ hrt compilation

,~Ada *
1*10.1 *

compilation 1 compilation unit { comppilai ion- unit } * azonu ii

Icompilation compilation unit {yyerrok; I
/error *I 1* I comipilation error*/

compilation-unit fr.
..mport_for. form

STDL *
form

module-definition

en tity definitLion
type definition
variable definition

Iconstant definition
Ioperation -definition
Iexception definition

module-definition
OBJECT_ PACKAGE_ defn headcr IS_
..module-form..
..Private..
defn-end

.private..
:1* emnpty *
Imodule pr-ivate J yyerrok;

modulepriva te PIAE 1 .ve r.

entityjdefinition
OBJECT_- db -simple type defn-header IS-

K: ~ ~~tpe definition ~ fr.
OBJECT_ TYPE- defn-header IS_
-type form..

vaibedefinition /* vspec-expression*/
OBJECT_ db-name ': identifier opt expression

* constant-definition
OBJECT_ db-name CONSTANT_ optdb type init expression

/* null *
db simple type

oprocedure~definitio

proceduure definition

I~~I OBJECT_ PROCEI)1RE_ defn-header opt rais
IS_
..mcthod spc. .operat ion_ form..declaration..

Ontologic, Inc. E-7 April 27. 1987
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BEGIN_
..statement..
defn end

function-definition
OBJECT FUNCTION_ defn-header
RETURN_- db-simple -type opt-raises IS-
..method spec..operation form..decl aration..
BEGIN_
..statement..
defo end

terator definition
ITERATOR_ defn header
YIELDS_ d-b-simple type opt_raises IS-
..method spec..operation form..dcclarai ion..
BEGIN_
..statemenL.
defn end

metLhod-definitLion
METHOD_ defn-header opt-raises
IS ..declaration..

1* B-EGIN-*
/* TBS ~

defn-end

exception_definition
OBJECT_ EXCEPTIION defn header IS_
..exception form..
defn end

opt raises
:1* null*
RAISES_ paramLP ..exception_list.. param_RP

dcfn-end
END- opt-db name defn-semii

defn semi
(yyerrok;

error

declaration.. /* I declaration }~
/* empty *
declaration., declaration { yycrrok;

..dcclarafion.. error

declaration
ENTER_ module name dccl semi
type specifier dccl-semi'

dccl semi
* (~ yyerT)k;

error ;

import-form.. /* import form}/
I* empty ~
..import_form.. import form (yyerTok,
..import_form., error

import form
IMPORT_ import-list

import list /* interface namc I ~ inierface namne)*/

interface-name
import_ list interface name {yyecrrok;
error

Ontologic, Inc. E-8 April 27, 19870
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import_ ist error
import_ list error interface nrie yyerrok;
import_list Verror

.module form.. /* module form {module form
module form
..module_- form.. module-form {yyerrok;

Ierror
I .module_ form., error

mo~dule form
form

Iinitializer

dcfn header
db namne optjaram_ list

..t% pefor-m.. /* type form {type form i~
typejform
type_ orm., type form ) yerrok;

Ierror
I.. type _ orm., error

Ypeform
module-form

Iinstance properties
I instLanee operations

representation

PROPERTIES_ ARE
..propcrty_spec..
END_ PROPFRTIIES

:n~tance-operations
OPERATIONS ARE-
-operation spec..

END_ OPERATIONS-

rep rL! enwttii S
FOR- REPR ESENTATION USE

rep dcfn..
END_ REPRESENTATION

*I.-VANC'E PROPErflYES
pro~pertv spec.. /* propertly spe { property spc

propertyspec
..properly_spec.. propertyspeo: yrrk
error

I..propery spec.. error

property spc
opt refines db name :'opt_property kind
value_spec opt exprecssion
..property option.. '

optirefines
1* emipty null ~
REFINES_

opt property kind
/* null *

Ipmperty_ kind

propertykind
OPTIONAL_

Ontologic, Inc. E-9 April 27, 1987
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I DISTRIBUTFED_

property optiofl/S I property option 1*
/* null *1/
..properly option.. propcrty option yyerrok;
. .property~option.. err

pr( perty option
property kind

IALLOWS .('prop_ace.. '

DISALLOWS_ ..prop_ace..
IINVERSE db name -

IUNREFINABLE
I constraint spec
IOBJECT_ prop op opt raises .methodspec..

prop_ace.. /* prop-aec {' prop-ace c
prop ace
..prop_ace.. ',' prop ace yycrrok;
error
..prop ace.. error
..prop_ace., error prop ace ( yerrok;
..prop_ac.., error

pop ace
db-name /* GFr_ / FF_ / IN/i /

db -name 1* GF STF *

INSTANVCE OPERATIONS*/
.(peratlon spec.. I* operation { operation }~

operation
..operation spec.. operation y( vverk;

Ierror
..operation spec.. error

pera ion opt_refines PROCEDURE_ db-name opt param-list

/* opt_raises /

.method spec..

I opt refines FUNCTIO1N_ db name. opt param_ list
RETrURN_ db name

1* opt_raises /

..method spec..

Iopt refines ITERATOR db-name opt parairn list
YIELDS_ db name

/* opt_raises*/
.method spec..

pIt_ paramlist
/* null *

Iparam list

pararn _list

paramLP parameter hlis paramRP

paramLP
Iyyerrok;

paramRP
-y I yyerrok;

Ontologic, Inc. F- 10 .\pill 27, 1QS~7
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Ierror )

pJarameter-list
..parameter spec..

IKEYWORDS ..paramn key spec..
-.parameter spec.. KEY WORDS_ ..pararn key spec..

return spec
expr _argument

exception list.. /* exception name {' exception name }~
*error caves handled by param_-RP /

..exception list.. 7, exception name { yyerrok; I
error

-.exception list,. error
-.exception list., error exception name I ycerrok;

/ exception list.. '.' error*I

..method spec.. /* I method spec }~
1* null *1/

..method spec.. method spec I yyerrok;I
I .meihod spec.. error *

nichodpecMETHOD '(' method nameT
ITRIGGERS_ '(' .method-name..')

.method name.. /* method name { method name I~
method name
..method name.. method_name I yyerrok,
error
-method name., error
.method name., error method-name ( x'errok;
..method-name.. ' error

opverationjform.. /* operation form f operation form I ~
operationjform
..operationjform.. operation form { yyerrok I

Ierror
-operation jorm.. error*/

operationjform
initialiizer

Istatement

exception_form.. I* exception form {exception form }~
exception_form 0
..excepfion_form.. exception form { 'yerrok,

Ierror
I..exception form.. error

exception form
initializer

method-name
db name

parameter spec.. /* parameter spc {' parameter-spec }*
parameter spec
-.parameter spec.. ';' parameter_spec I yyerrok;
Ierror *1F

1* / .parameter spec.. error*/

Ontologic, Inc. E-1I 1April 27. 1987
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IS / paralneter spec.. error paramneter-spec (yyerrok,J
IS Iparamelerspec.. -error *

parameter spc

opt constrains db name value spec opt, constraint spec

opt constrains .

/* null ~
ICONSTRAINS_

param_key spec.. I* param key spec I ; param key spec }*
param key spec
..param -key spec.. ';' param key spec {yyerrok,

IS / error
/5 / ~..param key spec.. error /
1* I ..param key spec.. error param key spec (yyerrok;) I
1 ~ I..paramkey-spec.. ' error * I

param key spec
OPTIONAL -parameter spec opt expression

Iparameter-spec

opt constraint spec
1* null 5

constraint spec

Constraint_spec
CONSTRAINABLE_ opt to clause

opt-to-clause
/* null *

TO_ value spc

/* REPRESENTATION*/
..rep-defn.. /* { rep dcfn }~

1* null *I /.d
..rep_defn.. rep defn {yycrrok;
..rep dcfn., error

rcp-defn ?P

db_name type expression opt_storage_layout F

Opt storage layout
I* null *

storage layout

storage~laout .4*

cluster clausc
I 'storage layout

/S / ~storage layout storage choice storage~layout r

/* storage_choice :AND_ I OR_- 1-
cluster clause

cluster_type cluster boc

cluster type
FILED

ICLUSTFERED -

I STORED 4

cluster loc
SEPARATELY-

Ontologic, Inc. E- 12 April 27. 1997
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I WITH_ db name I* 'U expression')*

I~NAMES

opt db name
/* null ~

1* $db-name is in lex *

exception_name
identifier

db-name
identifier

1*/ TYPE_ /* for type "type" '
/* MFFJIOD_ /* for type "method"*I

1*/ PROCEDCRE_ /* for type "procedure"*/
/* EXCEPTION_ /* for type "exception"*

1*/ RETURNS /* a property of "operation"*/
/* TRIGGERS_ /* a property of "operat ion"*

interface-name
identifier

module-name
identifier

type specifier
OBJECT- obj type

obj type
identifier opt object_arg_list

db simple type
db-name

/* EXPRESSIONS*/
/* iniialize

/~initializer *
initializerake xpesin n~ilie sm

db name keyword_marker egxpression initial izer-semi

keyword_marker
IS_
error IS_

IARE
I error ARE_
I ASSIGN
I error ASSIGN_

initializer_ semi

error

value_spec
expression

type expr list req type_expression
Itype expr list req ,'type expression

type expression
.expression

I ENUM '( tgcn_enum_list req')
IRECORD_'( tgen_record_Fields '

Ontologic, Inc. E- 13 April 27, 10S7
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IVARIANTC tgen_record_fields req '

tgen enum list req tgen_enum
tgen enum list req ',' tgen_enum

4.

S genenum db-name tgenecnumoptexpr
4

tgenenumopt-expr 1*empty null I

I -expression

tgen record_fields
igen record_fields_req

tgen record_fields-req tgen record field
tgen record_fields_req ;'tgenrecord_field

tgen record_field db name tgen record embedded 7value spec

tgen record_embedded l* empty null *

db-name

l* pri1mary expression /

init expression
ASSIGN_ expression

opt-expres sion
/* emnpty null *

init-expression

expression
literal

Idb name
1* I expr-consiruct*/

IexprunaryMinus
Iexprprecedence

1* / expr range * I
typejarameter7ed

1* / ~~vspecjiaraneerizedvseuno

literal
numeric titeral

Istring_literal
character-literal

expr construct ope_expression DLP expr argument list '
Iopt expression DL? expr arg ument_ list '

exprunaryMinus ' expression

exprprecedcnce '(expression 3

/* exrrneexpression DILDOT_ cxpression /

typeJparameteri7ed 1* I shifi Ireduce*/
:identifier ('cxpr argument list 3

vspcc union

UNIONTYPE_ ( type cxpr list req 3

Ontologic, Inc. E- 14 April 27, 19)87
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/* vspec parameterized db name • expr ranye ,
.* construclor * /
,' unary_ epression */

/* argument list /
/* argument */
opt_object_ arg list

/* null */
( object arglist ")

objectarglist /* expression { " obbjcct_arelist } */
expression

I expression ", object_arglist
I identifier : expression

identifier : expression object arglist

optarg_list
/* null */

I ( obj_arglist "

obj_arglist /* ( .rgument ( " argument } *
exprargument

I objarglist "" expr argument { yyerrok; }
I error
I obj arg list error
I obj_arg list error exprargument { yyerrok; I
I obj arglist error

expr argument
expression

I named association

named association
dbname ARROW_ expression

/* STATEMENTS *1
..statement.. /* statement { statement } */

statement
..statement.. statement { yyerrok; }
error

S..statement.. error

statement
NULL " /* for Testing only *1

J EXCEPT ( identifier ': identifier ")
..statement..
END EXCE T ;
PROTECT statement
RAISE identifier opt arg list "
RERAISE identifier optarglist ;
ITERATE- "(" identifier ASSIGN /*primary_*/expression ')" statement
YIELD expression ";'
RETURN expression ";"
call

call
dbname opt object arg list ';"

/* / getrep */
/* / makerep *1

Ontologic, Inc. E-15 April 27, 10S7
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5. Lexical Analyzer

This is the lex input source, which produces a regular expression recognizer. Its basic function is to
recognize keywords in the input stream.

%I"

,* Stleader: lex.lv 1.4 87/04/17 17.06.42 vilot Exp $
/ SLog: lei.l.v $
* Revision 1.4 87104117 17:06.42 vilot
* Added COP keywords, '$- to identifiers for db-narnes.

* Revision 1.3 87/03/02 11:11:18 vilot
* Minor changes for TDL.

* Revision 1.2 87/02/25 08:36:00 vilot
* Clean version 1'old' TDL}.

* Revision 1.1 87/02/23 13:44:18 vilot
* Initial revision

#include "y.tab.h"

#derine MAXLEN 256

int lines = 1; /* line number being processed */
int num errors 0; /* nwnber of errors encounteree -
char *filenamc[MAXLEN]; /* buffer for fileruime in error %," -

#define linenum priiafl"VL/%d\t",+ +lines)
%}

%e 1500 /* tree nodes array size */
%p 5500 /* positions * /

%a 5500 /* transitions array size * "
%k 1500 /* packed character classes */
%o 7500 /* output array size / o
%START IDENT Z

a [aA-
b [bBI
c [CC
d [dDI
e cEl-
f [W]
g [gGI
h [hHl
i [i[l

k [kK]
I1 I ILI
m [mM]
n lnNI
o loOl
P IPPI
q [qQ]
r frRl
s [sS]
t ltT]
u [uU
V vV~jw IwWl
x IxXI

Ontologic, Inc.
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y [y'rl
z ZZ]

(a)(c)(d~je)s~jsl (ECHO; BEGIN Z; return(ACCESS)
(a)(1)(1) (ECHO; BEGIN Z; return(ALL);)
(a)(n)(d) (ECHO; BEGIN Z; return(AND-);)
(a)(r)(e) (ECHO; BEGIN Z; return(ARE_);i
(alfrIjrl(a)(y) (ECHO; BEGIN Z; return(ARRAY);1
(a)ft) (ECHO; BEGIN Z; return(AT-);)
(b)(e)(g)(i)(n) (ECHO; BEGIN Z; return(BEGIN_);

*(bi(o)(d)(y) (ECHO; BEGIN Z; return(BODY_);1
(c)(a)(s)(e) (ECHO; BEGIN Z; return(CASE_);)

* (c)(oi(n)(s)(t)(ai(n)(t) (ECHO; BEGIN Z; retun(CONSTANT_);
I d)(e)(c)(Ii(a)(r)(e) (ECHO; BEGIN Z; return(DECLARE_);1
(d)lo) (ECHO; BEGIN Z; return(DO_);1
(e)(I)(s){e) (ECHO; BEGIN Z; return(ELSE_);)
(e)(1)(s)(i)(f) (ECHO; BEGIN Z; return(ELSIF-);)
(eitnijd1 (ECHO; BEGIN Z; return(END_);i
(e)(x)(c)(e) (p1(t) (i1(o)(n) (ECHO; BEGIN Z; return(EXCEPTION_);)
feitx)(i)(t) (ECHO; BEGIN Z; return(EXIT-);)
(f)(o1(r) (ECHO; BEGIN Z; return(FOR_);1
I fi(u)(n)(c) ItlI ii(ol(ni (ECHO; BEGIN Z; return(FUNCTION_);i
(g)(ei(ni(e)(ri (i)(c) (ECHO; BEGIN Z; return(GENERIC ) ;1
(illfl (ECHO; BEGIN Z; return(IF_);)
(i)(n) (ECHO; BEGIN Z; return(IN_);)
(il(s) (ECHO; BEGIN Z; return(IS_);)
(1)(0)(0)(p) (ECHO; BEGIN Z; return(LOOP-);)
(m)(o)(d) (ECHO; BEGIN Z; return(MOD_);
(n)(e)(w) (ECHO; BEGIN Z; return(NEW-);)
(n) Iu)( 11(1) (ECHO; BEGIN Z; return(NULL-);)
1o)(b)Uj~e~cct) (ECHO; BEGIN Z; return(OBJECT_);il
(o)(f) (ECHO; BEGIN Z; return(OF_);)
Mi1r) (ECHO; BEGIN Z; return(OR_);l
(o)(t)(h1(ci(r){s) (ECHO; BEGIN Z; returCOTHERS_);1
1 p1(a)Ic)(kija)Ig)Ie) (ECHO; BEGIN Z; return(PACKAGE_);)
(p1 (r)Ii)tv)(a){ti(e) (ECHO; BEGIN Z; return(PRIVATE_);
(p1 (r1(o)(c) (ci(dl(u) (rile) (ECHO; BEGIN Z; return(PROCEDURE_);
(r)(a)(i)(s)(e) (ECHO; BEGIN Z; return(RAISE-);)
frljeljcjfo~r~fd) (ECHO; BEGIN Z; return(RECORD_);
(r)(e)(t){u)(r)(n) (ECHO; BEGIN Z; return(RETURN_);1
(s)(e)(I1(eilc)(t) (ECHO; BEGIN Z; return(SELECI _);)
(s)(u)(b)(t)(y)(p)(e) (ECHO; BEGIN Z; return(SUBTYPE_);)
(1)(h)(c)(n) f(ECHO; BEGIN Z; return(THEN);1
{t)(y)(p)(e) (ECHO; BEGIN Z; return(TYPEJ;i
(u)(s)(c) (ECHO; BEGIN Z; return(USE-);)
(w)(h)(e)(n) (ECHO; BEGIN Z; return(WHEN_);1
(wflh)(i)(IfleJ (ECHO; BEGIN Z; return(WHILE_);)
{w)(i)(t)(h) (ECHO; BEGIN Z; return(WITH_);)

(ai)(11(o)(wi(si (ECHO; BEGIN Z; return(ALLOWS_);)
(cU II(uijs) {t(eflr) (e~d) (ECHO; BEGIN Z; return(CLUSTERED-);1
Ici(o)(n)(s1(tilrljalfi)(n)(s) (ECHO; BEGIN Z; return(CONSTRAI NS);)
(cI(o)(n)(s)(t)(r)(a)(i)(n)(a)(b)llile) (ECHO; BEGIN Z; returuCCONSTRAINABLE_);)
(d)(e)if)(i)(n)(e) (ECHO; BEGIN Z; return(DEFINE_);)
(djli)(s)(a)(1)(1)(o)(w)[s) (ECHO; BEGIN Z; return(DISALLOWS_);l
(d)(i) Is)(LItr(i)(b)(u)(t)(c)(d) (ECHO; BEGIN Z; return(DISTRIBUTED-);)
{e)In)(u)(m) (ECHO; BEGIN Z; return(ENUM_;
(fl(i)I1i(e)(d) (ECHO; BEGIN Z; return(FILED_)1
(iJ(m)(p)(oI(rJ(c) (ECHO; BEGIN Z; return(IMPORT_);l
(i)(n)(v)te)(r)(s)(c) (ECHO; BEGIN Z; return(INVERSE_);)
(i)ItljeljrIja)jt)[o)(r) (ECHO; BEGIN Z; return(ITERATOR_);i
(ki1e)(yItw)(oijritd)(s) (ECHO; BEGIN Z; return (KEYWORDS_);)

(m)(e)t(h)(o)(dj (ECHO; BEGIN Z; return(METHOD);)
(oflpileira)(t)(i1(o1(n)(s) (ECHO; BEGIN Z; return(OPERATIONS_);)

Ontologic, Inc. E- 17 April 27, 1987
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(oIjp)(L)(i){oljnIja)fII (ECHO; BEGIN Z; return(OPTIONAL_;
(p}(rl(o)(p)(e)(r)(t)(i)(e)(s) (ECHO; BEGIN Z; return(PROPERTIEfS_);J
(r}(a)(i)(s)(e)(sl (ECHO; BEGIN Z; return(RAISES_);)
jrr(e)(f)(i)(n)(e)(s) (ECHO; BEGIN Z; return(REFINES_);)
(r}(e)(p)(r)(e)(s)(e)(n)lt)(a)(t)(iflo){n) (ECHO; BEGIN Z; return(REPRESENTATION_U;
jrll)(10u)(r)(n)(s) (ECHO; BEGIN Z; return(RETURNS_);}
(s)(e)(p)(a)(r)(a)(t)(c)(}(y) {ECHO; BEGIN Z; return(SEPARATELY_;
(sl(t)(o)(r)(e)(d) (ECHO; BEGIN Z; return(STORED_)j)
(11(r) (i)(g) Ig~e) (r)(s) (ECHO; BEGIN Z; return(TRIGGERS_);1
(t)(y)(p)(e)(p)(r)(o)(p)(e)lr)(t(i)(e)(sI (ECHO; BEGIN Z; return(TYPE_PROPERTIES_);}
(u ( ni (i) (a)(n)(t}(y) (p}(e) (ECHO; BEGIN Z; return(UNIONTYPE_);l
(u)(n)(r)(e)(f}(i)(n)(a)(b)(I}(cI (ECHO; BEGIN Z; return(UNREFINABLE );)
(v)(a)(r)(i)(a)(n)(t) (ECHO; BEGIN Z; return(VARIANT_;
(y)(i)(e)(I}(d)(s) (ECHO; BEGIN Z; return(YIELDS_);)

(e)(n)(t)(dllr) (ECHO; BEGIN Z; return(ENTER_);I
(e~jx)fcjje}(plft) (ECHO; BEGIN Z; return(EXCEPT_);1
(i)(t)(el(r)(a)(t)(e) (ECHO; BEGIN Z; return(ITERATE_);)
1p)(r)(o)(t)(e}(c)(t) (ECHO; BEGIN Z; return(PROTECT_);
(r)(eflr){a)(ij(s)e (ECHO; BEGIN Z; return(RERAlSE_);1
101() (ECHO; BEGIN Z; return(TO-);)
(y)(i)(e))(d) (ECHO; BEGIN Z; return(YIELD_;

(ECHO; BEGIN Z; return(ARROW_);)
(ECHO; BEGIN Z; return(DBLDOT_);)
(ECHO; BEGIN Z ; return(EXP_);1
(ECHO; BEGIN Z; return(ASSIGN_;

1"(ECHO; BEGIN Z; return(NOTEQL_);}
(ECHO; BEGIN Z; return(GTEQL_);
(ECHO; BEGIN Z; return(LTEQLJ;l
(ECHO; BEGIN Z; return(LLBL-);
(ECHO; BEGIN Z; return(R_LBL,_);1
(ECHO; BEGIN Z; return(BOX_);)

(ECHO; BEGIN Z; return('&);
(ECHO; BEGIN Z; return('(');
(ECHO; BEGIN IDENT; return(II;
(ECHO; BEGIN Z; return('*'); I

+ (ECHO; BEGIN Z; return('+');
(ECHO; BEGIN Z; return(',);I
(ECHO; BEGIN Z; return(-');
(ECHO; BEGIN Z; return('.);I

7(ECHO; BEGIN Z; return('/I; I
(ECHO; BEGIN Z; return(':); )
(ECHO; BEGIN Z; return(';'); )
(ECHO; BEGIN Z; return('<); )
(ECHO; BEGIN Z; return('='); )
(ECHO; BEGIN Z; return('>'; )
(ECHO; BEGIN Z; return('1I);I

.JDENT>\V (ECHO; BEGIN Z; return('\");) 1* type mark only ~

"S(ECHO; BEGIN Z; return('S');
(ECHO; BEGIN Z; return([);1
(ECHO; BEGIN Z; return(']'; I
(ECHO; BEGIN Z; return((); )

""(ECHO; BEGIN Z; return(')'); )

(\Sa-zA-Zj~a-z A-ZO-9\Sl* (ECHO; BEGIN IDENT; return(idenfifier);)
[0-91[O0-9_] ([. ][5-9_1+)?([Eel[-+ ]?[0-9_1 +)? 4

ECHO; BEGIN Z; return(numer-ic_literal);)

[0-9](0-9_]*#[0.-9a-fA-F_J+([.Jj0-9a-fA-F_+)?#([Ec][-+]?[0--9]+)?I
ECHO; BEGIN Z; return(numeric_literal);)

[0-9][0-9]\[-9a-fA-F +([.l0-9a-fA-FJ) (Ec 1[-+]?[ 0-9 l+)? I
ECHO; BEGIN Z; rcturn(numcric-litcral);)
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(ECH; BGIN ; rturnstrng lterl);
VIWTO.T.(ECHO; BEGIN Z; return(string literal);)

(ECHO; BEGIN Z; return(cbracte litral);)

\E] ECHO; I* ignore whitespace *
* ECHO; 1* ignore comments to end-of-line

[\n] (ECHO; ++lihnes;) I' linenum; I.m

.0
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F. Data Model
This appendix describes the data model for the kernel of an extensible database. It contains the following
elements:

" Method

" Operation

" Property

" Type

" Entity

Ontoogic Inc F-1Apri 27,198
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1. Method

object type Method is

supertypes Entity

properties are
implements Set ( Operation ) distributed inverse Ope ratio n$baseMethod
isTriggerOf Set ( Operation ) distributed inverse Ope ratio n$triggers
cals -array
caislots -array

end properties;

private

properties are
codeAddr Integer
functionNanie :String optional

-- generated method name
isCreate :Boolean optional
islterator :Boolean optional

end properties;

object MethodCount :Integer :=0
object MethodNames :Unordered Dictionary

end Method

Ontologic, Inc. F-2 April 27, 1987
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2. Operation

object type Operation is

supertypes " Type
isInstantiable := $False

properties are '

baseType Type inverse Type$defops
baseMethod Method inverse Method$implements
triggers Set ( Method ) inverse Method$isTriggerOf distributed
isRefineable Boolean ;
refineeName String
refinesOp Operation inverse Operation$refinements
refinements Set ( Operation ) inverse Operation$refinesOp distributed
args Set ( ArgSpec ) distributed
returns ArgSpec
exceptions Set ( Exception ) distributed

end properties;

object procedure Effect ( op Operation
args ArgumentList
forwardRef Entity
author Entity ) is

end Effect

object function Invoke ( op Operation
args ArgumentList ) return Entity raises ( MissingArgument ,

InvalidArgument
ExtraneousArgument
InvalidException
UnlinkedMethod ) is

end Invoke ;

object procedure setupFreeop ( op Operation
super : Type ) is
-- used to do opsetup on freeops

end setupFreeop
object function Create ( Ty Type

optional isRefinable Boolean $True
optional args Array ( ArgSpec )
optional returns ArgSpec
optional exceptions Array ( Exception )
optional baseType Type
optional baseMethod Method
optional triggers Array ( Method )
optional refineeName String
optional refinesOp Operation
optional supertypes Array ( Type )
optional typemodule Module ;
optional where Entity
optional howNear Clustering ) return Operation

raises ( RefinedOperationlsUnrefinable
IllegalRefinementR.tum
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IllegaiRefinemnentExcepi ion
IllegalRefinementAdditionalRequiredArgWithNoDefault
IllegalRefinementMissingRequiredArg
IllegalRefmementArgVSpec
DuplicateArgNanes
BadDispatchArgSpec
NoMemory,
ConflictingRequirements ) is
type CreateOp
supertypes Type$Create

end Create

properties are
dispatcbTablelndex Integer

-- this is -1 in freeops
codeAddrList CodeAddrList
protocal protocal

end properties;

methods are
Create $Entity$GenericCreate
Create trigger OperationValidate
Create trigger OperationGenerate
Effect Operation_-Effect
Invoke proc -invoke;
setupFreeop Operation setupFreeop

end methods,

end Operation

Ontologic, Inc. F-4 April 27, 1987
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3. Property

object type Property is

supertypes Type

properties are
basetype : Type inverse Type$defprops disallows ( set )
vspec Valuespec ;
constrainableTo Valuespec optional
defaultvalue Entity optional ;
isOptional Boolean := False disallows ( set )
isDistributed Boolean False disallows ( set )
isRefinable Boolean True ;
get Operation optional disallows ( set ) unrefinable
set Operation optional disallows ( set ) unrefinable
init Operation optional disallows ( set ) unrefinable
insert Procedure optional disallows ( set ) unrefinable
remove Procedure optional disallows ( set ) unrefinable
refineeName String optional ;
refinesProp Property optional inverse Property$refinement
refinements Set ( Property ) distributed inverse Property$refinesProp
inverseProp Property optional disallows ( set ) inverse Property$inverseProp

end properties;

end Property

* Ontologic, Inc. F-5 April 27, 1987
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4. Type

object type Type is

supertypes Valuespec

properties are
name symbol optional
supertypes Set ( Type ) inverse Type$subtypes distributed
subtypes Set ( Type ) inverse Type$supertypes distributed
defops Set ( Operation ) inverse Operation$basetype distributed
defprops Set ( Property ) inverse Property$basetype distributed
islnstandable Boolean := True optional disallows ( set )
typeclass Class optional allows ( get )
typevspec Valuespec allows ( get );
createOp : $CreateOp optional inverse $CreateOp$basetype disallows ( set

deleteOp Procedure optional disallows ( set )
parameters Array ( Property ) optional

end properties;

operations are
function Instantiate ( t Type ; argl ArgumentList ) return Entity
raises ( TypeDoesNotExist

TypeUninstantiable
TypeHasNoCreateOp,
Missinglnitializor ,
Extraneouslnitializor
InvalidArgument
InvalidException
UnlinkedCreateOpMethod,
BadCreateOfSystemType
BadCreateOfApplicationType )

end operations;

object function Create ( Ty Type
optional supertypes Array ( Type )
optional name Symbol
optional islnstantiable Boolean True
optional typemodule Module
optional defprops Array ( Property )
optional defops Array ( Operation ) ;
optional RequirementsDesc : Array ( ReqDesc )
optional typeclass Class ;
optional createOp CreateOp
optional deleteOp Procedure
optional parameters Array ( Property
optional where Entity ;
optional howNear Clustering ) return Type raises ( NoMemory
ConflictingRequirements ) is
type := CreateOp
supertypes Valuespec$create

end Create

Ontologic, Inc. F-6 April 27, 1987
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end Type;

Ontologic, Inc. F-7 April 27, 1987
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5. Entity 0.

object type Entity is

directType MasterType ; ,
supertypes Entity ; ',

instantiable False

properties are
directType Type disallows ( set )

end properties;

operations are
function equal ( el Entity ; e2 Entity ) return Boolean
procedure delete ( e Entity ) raises ( CannotDelete ) ;
function hasType ( e Entity ; typ Type ) return Boolean .
function typeOf ( e Entity ) return Type
iterator getTypes ( e Entity ) yields Type

end operations;

object function GetName ( e Entity ) return Symbol raises ( NotFound ) is .
end GetName

object funiction HardReference ( e Entity ) return Entity raises ( SymbolUndefined ,

NoValue ) is
end HardReference ; 4

object function Create ( type Type
optional where : Entity ;
optional hownear: Clustering ) return Entity raises ( BadCreate
UnInitableProperty
NoMemory
ConflictingRequirements ) is
type CreateOp

end Create

end Entity ; ''."

.

Ot.i I
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